Store-operated calcium entry (SOCE) and TRPC protein expression were investigated in the rat-derived hippocampal H19-7 cell line. Thapsigargin-stimulated Ba 2؉ entry and the expression of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 mRNA and protein were observed in proliferating H19-7 cells. When cells were placed under differentiating conditions, a change in TRPC homolog expression profile occurred. The expression of TRPC1 and TRPC3 mRNA and protein dramatically increased, while the expression of TRPC4 and TRPC7 mRNA and protein dramatically decreased; in parallel a 3.4-fold increase in the level of thapsigarginstimulated Ba 2؉ entry was observed and found to be inhibited by 2-aminoethoxydiphenylborane. The selective suppression of TRPC protein levels by small interfering RNA (siRNA) approaches indicated that TRPC1 and TRPC3 are involved in mediating SOCE in proliferating H19-7 cells. Although TRPC4 and TRPC7 are expressed at much higher levels than TRPC1 and TRPC3 in proliferating cells, they do not appear to mediate SOCE. The co-expression of siRNA specific for TRPC1 and TRPC3 in proliferating cells inhibited approximately the same amount of SOCE as observed with expression of either siRNA alone, suggesting that TRPC1 and TRPC3 work in tandem to mediate SOCE. Under differentiating conditions, co-expression of siRNA for TRPC1 and TRPC3 blocked the normal 3.4-fold increase in SOCE and in turn blocked the differentiation of H19-7 cells. This study suggests that placing H19-7 cells under differentiating conditions significantly alters TRPC gene expression and increases the level of SOCE and that this increase in SOCE is necessary for cell differentiation.
Background Fine needle aspiration (FNA) biopsy plays a critical role in the diagnosis and staging of lung primary and metastatic lung carcinoma. Accurate subclassification of adenocarcinoma (ADC) and/or squamous cell carcinoma (SqCC) is crucial for the targeted therapy. However, the distinction between ADC and SqCC may be difficult in small FNA specimens. Here, we have retrospectively evaluated the utility of TTF-1, Napsin A, CK7, P63 and CK5/6 immunohistochemical (IHC) markers in the distinguishing and subclassification of ADC and SqCC. Methods A total of 246 FNA cases were identified by a computer search over a two-year period, including 102 primary NSCLC and 144 primary NSCLC which had metastasized to other sites. The immunostaining patterns of TTF-1, Napsin A, CK7, P63 and CK5/6 were correlated with the histological diagnosis of the tumor. Results In 72 primary ADCs, TTF-1, Napsin A and CK7 showed a sensitivity and specificity of 84.5%/96.4%, 92.0%/100%, and 93.8%/50.0%. In 30 primary SqCCs, CK5/6 and P63 showed a sensitivity and specificity of 100%/77.8% and 91.7%/78.3%. In 131 metastatic ADCs, Napsin A showed the highest specificity (100%), versus TTF-1 (87.5%) and CK7 (25%) but decreased sensitivity (67.8% versus 86.9% and 100%); whereas in 13 metastatic SqCCs, CK5/6 and P63 showed a sensitivity/specificity of 100%/84.6% and 100%/68.4%. Bootstrap analysis showed that the combination of TTF-1/CK7, TTF-1/Napsin A and TTF-1/CK7/Napsin A had a sensitivity/specificity of 0.960/0.732, 0.858/0.934, 0.972/0.733 for primary lung ADCs and 0.992/0.642, 0.878/0.881, 0.993/0.618 for metastatic lung ADCs. Conclusions Our study demonstrated that IHC markers had variable sensitivity and specificity in the subclassification of primary and metastatic ADC and SqCC. Based on morphological findings, an algorithm with the combination use of markers aided in the subclassification of NSCLCs in difficult cases.
The ability of muscarinic cholinergic receptors (mAChRs) to regulate the volume-sensitive efflux of two organic osmolytes, namely, taurine and D-aspartate, from human SH-SY5Y neuroblastoma cells has been examined. Incubation of the cells with hypoosmolar buffers resulted in an efflux of both osmolytes, with the threshold for release occurring at approximately 225 mOsM for taurine and D-aspartate. Inclusion of oxotremorine-M (Oxo-M), a muscarinic agonist, resulted in a marked enhancement of the volume-dependent efflux of both osmolytes and increased the threshold osmolarity for taurine and D-aspartate release to 340 (isotonic) and 320 mOsM, respectively. Maximum agonist stimulation of osmolyte release (350% of basal) was observed in the range of 225 to 250 mOsM. Oxo-M-stimulated osmolyte efflux was inhibited by muscarinic antagonists with a rank order of ,4]benzodiazepin-6-one, a pharmacological profile identical to that obtained for M 3 mAChRstimulated phosphoinositide hydrolysis. Agonist-stimulated efflux of both osmolytes could be inhibited by inclusion of either anion channel blockers known to inhibit the volume-sensitive organic anion channel (VSOAC) or by a tyrosine kinase inhibitor ␣-cyano-(3,4-dihydroxy)cinnamonitrile. The results indicate that the activation of M 3 mAChRs on SH-SY5Y neuroblastoma facilitates the ability of these cells to respond to very limited reductions in osmolarity via a release of osmolytes. mAChR-stimulated osmolyte efflux is mediated via a VSOAC and seems to require the activity of a tyrosine kinase.Although most cells possess homeostatic mechanisms for the maintenance of cell volume, these are particularly important to cells in the central nervous system (CNS) because of restrictions of the skull. Even modest alterations in brain volume can have profound effects on cell-cell signaling because the spatial relationship between neurons, astrocytes, and the extracellular space becomes compromised. Brain swelling, which can occur in response to conditions such as hyponatremia, inappropriate secretion of antidiuretic hormone, or after polydypsia, can lead to the compression of small blood vessels, and subsequently, cerebral anoxia and ischemia. Death can result from the displacement of brain parenchyma through the foramen magnum and the ensuing cardiac and respiratory arrest (Pasantes-Morales et al., 2000). To counter these deleterious changes, neural cells initially restore their osmotic balance via a loss of K ϩ and Cl Ϫ ions. However, because large changes in ion concentrations can adversely impact excitability, cells subsequently use "compatible" or nonperturbing organic osmolytes to counter changes in osmolarity without compromising cell function. In the CNS, the three quantitatively major organic osmolytes are taurine, glutamate, and myo-inositol. Organic osmolytes are released from neural cells via a volume-sensitive organic anion channel (VSOAC), a channel that has been extensively characterized both electrophysiologically and pharmacologically, although its molecular s...
Elevated endogenous cholecystokinin (CCK) release induced by protease inhibitors leads to pancreatic growth. This response has been shown to be mediated by the phosphatase calcineurin, but its downstream effectors are unknown. Here we examined activation of calcineurin-regulated nuclear factor of activated T-cells (NFATs) in isolated acinar cells, as well as in an in vivo model of pancreatic growth. Western blotting of endogenous NFATs and confocal imaging of NFATc1-GFP in pancreatic acini showed that CCK dose-dependently stimulated NFAT translocation from the cytoplasm to the nucleus within 0.5-1 h. This shift in localization correlated with CCK-induced activation of NFAT-driven luciferase reporter and was similar to that induced by a calcium ionophore and constitutively active calcineurin. The effect of CCK was dependent on calcineurin, as these changes were blocked by immunosuppressants FK506 and CsA and by overexpression of the endogenous protein inhibitor CAIN. Parallel NFAT activation took place in vivo. Pancreatic growth was accompanied by an increase in nuclear NFATs and subsequent elevation in expression of NFAT-luciferase in the pancreas, but not in organs unresponsive to CCK. The changes also required calcineurin, as they were blocked by FK506. We conclude that CCK activates NFATs in a calcineurin-dependent manner, both in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.