In this paper, the use of the machine learning algorithm is examined in derivation of the determinants of price movements of stock indices. The Random Forest algorithm was selected as an ideal representative of the nonlinear algorithms based on decision trees. Various brokering and investment firms and individual investors need comprehensive and insight information such as the drivers of stock price movements and relationships existing between the various factors of the stock market so that they can invest efficiently through better understanding. Our work focuses on determining the factors that drive the future price movements of Stoxx Europe 600, DAX, and WIG20 by using the importance of input variables in the Random Forest classifier. The main determinants were derived from a large dataset containing macroeconomic and market data, which were collected everyday through various ways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.