The selected techniques were reviewed and their technological aspects were characterized in the context of multi-phase flow for biogas production. The conditions of anaerobic fermentation for pig slurry in a mono-substrate reactor with skeleton bed were analysed. The required technical and technological criteria for producing raw biogas were indicated. Design and construction of the mono-substrate model, biogas flow reactor, developed for cooperation with livestock buildings of various sizes and power from 2.5 kW to 40 kW. The installation has the form of a sealed fermentation tank filled with a skeletal deposit constituting a peculiar spatial system with regular shapes and a rough surface. Incorporating a plant in such a production cycle that enables the entire slurry stream to be directed from the cowshed or pig house underrun channels to the reactor operating in the flow mode, where anaerobic digestion will take place, allows to obtain a biogas. The paper presents preliminary results of experimental investigations in the field of hydrodynamic substrate mixing system for biogas flow assessment by the adhesive bed in the context of biogas production. The aim of the study was to assessment and shows the influence of the Reynolds number on the biogas resistance factor for the fermentation process in mono-substrate reactor with adhesive deposit. The measurement results indicate a clear effect of the Reynolds number in relation to the descending flow resistance coefficient for the adhesive bed.
The aim of this study was to perform a comparative analysis of the unit gas emission value in the exhaust of a dual fuel diesel engine. The results of the effects of a diesel engine’s applications in biogas plants and the method for calculating mass gas emissions per unit of produced electricity are shown. The test was performed using a two-cylinder, naturally aspirated, liquid-cooled diesel engine. The diesel engine powered a generator connected to the grid. The engine was fed with liquid fuels—waste cooking oil methyl ester (UCOME) and diesel fuel (DF)—and with a gas fuel, biogas (BG). The engine ran at a constant rotational speed (2000 rpm ± 30 rpm) with variable load. The gas analyzer measured the amount of CO, NO, NO2, and PM (particulate matter) in exhaust gas. This gas content share was then converted to mass per engine generated energy unit. This experiment showed the effect of BG introduced to the intake manifold on fuel combustion, as well as an increase in CO and NO2 emission and decrease in NO and PM. In terms of dependence of exhaust emissions on the type of liquid fuel used, the use of UCOME as opposed to diesel fuel resulted in PM reduction and increase of NO emissions.
Biogas production is the most important and promising alternative for replacing fossil fuels in an environmentally friendly manner. Along with the many renewable energy sources available, biogas production occupies an irreplaceable position due to the undeniable availability of biomass and the need to manage agro-commercial waste. The article reviews the current state of technology used in the production of biogas for selected European examples in terms of methane fermentation efficiency and actual energy production. The novelty of the article is its description of innovative trends that have great potential to play an important role in this field in the near future. The development of the biogas industry in Europe is evident, although the dynamics vary from country to country. Different models are presented, which are based on the different types of feedstock used for biogas production and the proportion of substrates used in co-digesters. Of course, Germany is the undisputed pioneer in the use of this renewable energy source. Nevertheless, the efforts to improve energy self-reliance and environmental impacts are reflected in the growing number of operational biogas plants in other European countries, which provides hope for rapid progress toward the complete abolition of the conventional exploitation of fossil fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.