Calcium supplements are broadly prescribed to treat osteoporosis either as monotherapy or together with vitamin D to enhance calcium absorption. It is still unclear whether calcium supplementation significantly contributes to the reduction of bone fragility and fracture risk. Data suggest that supplementing post-menopausal women with high doses of calcium has a detrimental impact on cardiovascular morbidity and mortality. Chronic kidney disease (CKD) patients are prone to vascular calcification in part due to impaired phosphate excretion. Calcium-based phosphate binders further increase risk of vascular calcification progression. In both bone and vascular tissue, vitamin K-dependent processes play an important role in calcium homeostasis and it is tempting to speculate that vitamin K supplementation might protect from the potentially untoward effects of calcium supplementation. This review provides an update on current literature on calcium supplementation among post-menopausal women and CKD patients and discusses underlying molecular mechanisms of vascular calcification. We propose therapeutic strategies with vitamin K2 treatment to prevent or hold progression of vascular calcification as a consequence of excessive calcium intake.
Rationale Vascular calcification is a prominent feature of late‐stage diabetes, renal and cardiovascular disease (CVD), and has been linked to adverse events. Recent studies in patients reported that plasma levels of osteomodulin (OMD), a proteoglycan involved in bone mineralisation, associate with diabetes and CVD. We hypothesised that OMD could be implicated in these diseases via vascular calcification as a common underlying factor and aimed to investigate its role in this context. Methods and results In patients with chronic kidney disease, plasma OMD levels correlated with markers of inflammation and bone turnover, with the protein present in calcified arterial media. Plasma OMD also associated with cardiac calcification and the protein was detected in calcified valve leaflets by immunohistochemistry. In patients with carotid atherosclerosis, circulating OMD was increased in association with plaque calcification as assessed by computed tomography. Transcriptomic and proteomic data showed that OMD was upregulated in atherosclerotic compared to control arteries, particularly in calcified plaques, where OMD expression correlated positively with markers of smooth muscle cells (SMCs), osteoblasts and glycoproteins. Immunostaining confirmed that OMD was abundantly present in calcified plaques, localised to extracellular matrix and regions rich in α‐SMA+ cells. In vivo, OMD was enriched in SMCs around calcified nodules in aortic media of nephrectomised rats and in plaques from ApoE−/− mice on warfarin. In vitro experiments revealed that OMD mRNA was upregulated in SMCs stimulated with IFNγ, BMP2, TGFβ1, phosphate and β‐glycerophosphate, and by administration of recombinant human OMD protein (rhOMD). Mechanistically, addition of rhOMD repressed the calcification process of SMCs treated with phosphate by maintaining their contractile phenotype along with enriched matrix organisation, thereby attenuating SMC osteoblastic transformation. Mechanistically, the role of OMD is exerted likely through its link with SMAD3 and TGFB1 signalling, and interplay with BMP2 in vascular tissues. Conclusion We report a consistent association of both circulating and tissue OMD levels with cardiovascular calcification, highlighting the potential of OMD as a clinical biomarker. OMD was localised in medial and intimal α‐SMA+ regions of calcified cardiovascular tissues, induced by pro‐inflammatory and pro‐osteogenic stimuli, while the presence of OMD in extracellular environment attenuated SMC calcification.
Background Hyperphosphatemia is strongly associated with cardiovascular disease and mortality. Recently, phosphate binders (PBs), which are used to bind intestinal phosphate have been shown also to bind vitamin K, thereby potentially aggravating vitamin K deficiency. This vitamin K-binding by PBs may offset beneficial effects of phosphate level reduction on reducing vascular calcification (VC). Here we assessed whether combining PBs with vitamin K2 supplementation inhibits VC. Methods We performed 3/4Nx in rats, after which warfarin was given for three weeks to induce vitamin K-deficiency. Next, animals were fed a high phosphate diet in the presence of low or high vitamin K2 and were randomized to either control or one of four different PBs for eight weeks. Primary outcome was the amount of thoracic and abdominal aorta VC measured by high-resolution micro-Computed Tomography (μ-CT). Vitamin K status was measured by plasma MK7 levels and immunohistochemically analyzed in vasculature using ucMGP specific antibodies. Results Combination of high vitamin K2 diet and PB treatment significantly reduced VC as measured by μ-CT, for both thoracic (p = 0.026) and abdominal aorta (p = 0.023), compared to MK7 or PB treatment alone. UcMGP stain was significantly more present in the low vitamin K2 treated groups in both thoracic (p<0.01) and abdominal aorta (p<0.01) as compared to high vitamin K2 treated groups. Moreover, high vitamin K diet and PBs led to reduced vascular oxidative stress. Conclusion In an animal model of kidney failure with vitamin K-deficiency, neither PB therapy nor vitamin K2 supplementation alone prevented VC. However, the combination of high vitamin K2 with PB treatment significantly attenuated VC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.