Seasonal variation of air pollution is associated with variety of seasons and specificity of particular months which form the so-called summer and winter season also known as the “heating” season. The occurrence of higher values of air pollution in different months of a year is associated with the type of climate, and accordingly with different atmospheric conditions in particular months, changing state of weather on a given day, and anthropogenic activity. The appearance of these conditions results in different levels of air pollution characteristic for a given period. The study uses data collected during a seven-year period (2009–2015) in the automatic measuring station of immissions located in Eastern Wielkopolska. The analysis concerns the average and maximum values of air pollution (i.e., particulate matter PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) from the perspective of their occurrence in particular seasons and months or in relation to meteorological actors such as temperature, humidity, and wind speed.
This publication presents research work which contains the optimum parameters of the agri-biomass: maize and oat straws torrefaction process. Parameters which are the most important for the torrefaction process and its products are temperature and residence time. Thermogravimetric analysis was performed as well as the torrefaction process using an electrical furnace on a laboratory scale at a temperature between 250-525 • C. These biomass torrefaction process parameters-residence time and temperature-were necessary to perform the design and construction of semi-pilot scale biomass torrefaction installations with a regimental dryer and a woody and agri-biomass regimental torrefaction reactor to perform a continuous torrefaction process using superheated steam. In the design installation the authors also focused on biochar, a bi-product of biofuel which will be used as an additive for natural bio-fertilizers. Kinetic analysis of torrefaction process using maize and oat straws was performed using NETZSCH Neo Kinetics software. It was found that kinetic analysis methods conducted with multiple heating rate experiments were much more efficient than the use of a single heating rate. The best representations of the experimental data for the straw from maize straw were found for the n-order reaction model. A thermogravimetric analysis, TG-MS analysis and VOC analysis combined with electrical furnace installation were performed on the maize and oat straw torrefaction process. The new approach in the work presented is different from that of current scientific achievements due to the fact that until now researchers have worked on performing processes on oat and maize straws by means of the torrefaction process for the production of a biochar as an additive for natural bio-fertilizers. None of them looked for economically reasonable mass loss ratios. In this work the authors made the assumption that a mass loss in the area of 45-50% is the most reasonable loss for the two mentioned agri-biomass processes. On this basis, a semi-pilot installation could be produced in a further BIOCARBON project step. The kinetic parameters which were calculated will be used to estimate the size of the apparatuses, the biomass dryer, and biomass torrefaction reactor.
The first reports that it is possible to emit dioxins from the heat and power generation sector are from the beginning of the 1980s. Detailed research proved that the emission of dioxins might occur during combustion of hard coal, brown coal, and furnace oil as well as coke-oven gas. The emission of dioxins occurs in wood incineration; wood that is clean and understood as biomass; or, in particular, wood waste (polluted). This paper thoroughly discusses the mechanism of dioxin formation in thermal processes, first and foremost in combustion processes. The parameters influencing the quantity of dioxins formed and the dependence of their quantity on the conditions of combustion are highlighted. Furthermore, the methods of reducing dioxin emissions from combustion processes (primary and secondary) are discussed. The most efficacious methods that may find application in the heat and power generation sector are proposed; this is relevant from the point of view of the implementation of the Stockholm Convention resolutions in Poland with regard to persistent organic pollutants.
The phenomenon of above-average air pollution, i.e., smog, in urban areas is known. Two types of smog have been described in the literature: London and Los Angeles smog. They differ in the conditions of formation and areas of occurrence. In recent years, the phenomenon of smog has also been observed in Poland, where the main reason for poor air quality is exceeding the permissible PM10 concentrations. The main source of particulate matter emissions in Poland is the so-called “low emission”, i.e., released by emitters up to 40 m high, mainly from domestic boilers and traffic. Based on the data from the environmental protection inspection, an analysis was carried out of the impact of atmospheric factors, such as atmospheric pressure and air temperature, on air pollution caused by particulate matter in Poland. Next, data concerning the chemical composition of PM10 particulate matter in Poland was analyzed. In the next stage, tests were carried out on ammonia emissions from biomass and coal combustion processes to determine the source of ammonium ions as a component of particulate matter. The results of analyzes and research allowed us to formulate the thesis about the existence of a specific type of smog called “Polish smog” and determine the conditions for its formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.