This article develops a particle swarm optimization algorithm based on a feed-forward neural network architecture to fit software reliability growth models. We employ adaptive inertia weight within the proposed particle swarm optimization in consideration of learning algorithm. The dynamic adaptive nature of proposed prior best particle swarm optimization prevents the algorithm from becoming trapped in local optima. These neuro-prior best particle swarm optimization algorithms were applied to a popular flexible logistic growth curve as the [Formula: see text] model based on the weights derived by the artificial neural network learning algorithm. We propose the prior best particle swarm optimization algorithm to train the network for application to three different software failure data sets. The new search strategy improves the rate of convergence because it retains information on the prior particle, thereby enabling better predictions. The results are verified through testing approaching of constant, modified, and linear inertia weight. We assess the fitness of each particle according to the normalized root mean squared error which updates the best particle and velocity to accelerate convergence to an optimal solution. Experimental results demonstrate that the proposed [Formula: see text] model based prior best Particle Swarm Optimization based on Neural Network (pPSONN) improves predictive quality over the [Formula: see text], [Formula: see text], and existing model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.