A model of lung eosinophilia based on the repeated exposure of mice to aerosolized OVA has been used to identify C-C chemokine genes expressed at stages of massive eosinophil infiltration. We describe the identification and cloning of a cDNA that encodes a mouse C-C chemokine with 68% amino acid identity to guinea pig Eotaxin. The recombinant protein encoded by this gene displays potent and specific chemotactic activity for eosinophils, both in vivo and in vitro. Its mRNA levels parallel the kinetics of eosinophil accumulation in the lung during the experimentally induced eosinophilia and it is mainly produced by type I alveolar epithelial cells. The mRNA expression of mouse Eotaxin is not restricted to Th2 T cells in vitro and is independent of the development of a Th2-type response during N. brasiliensis infection, in vivo.
Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.