As a new freshwater aquaculture product, triploid loaches (Misgurnus anguillicaudatus) are characterized by fast growth, high-quality meat, high edibility, high resistance to disease, and sterility. In this study, a natural tetraploid loach (4n = 100) (♀) was crossed with a diploid loach (2n = 50) (♂), thus creating the hybrid triploid loach (3n = 75). The histological observations of triploid offspring and diploid controls at 4 days post-hatching (dph), 15dph, 22dph, and 50dph showed that most of the hybrid triploid loaches were abortive in the early gonad differentiation process. To explore its fertility mechanism, through transcriptome analyses of triploid offspring and diploid controls at four periods, 10 differentially expressed genes related to the early fertility mechanism were identified: amh, hormad1, rec8, h2b, plvap, zp3, h2a, nrb0b1, ddx4, and esr2. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs, two pathways were identified that are closely related to the early fertility mechanism at 50dph: the estrogen signaling pathway and steroid biosynthesis. The findings laid a foundation for further exploration of their molecular inhibition mechanism in hybrid triploid loaches.
Androgenesis is an important chromosome set manipulation technique used in sex control in aquaculture. Haploid embryos exhibit haploid syndrome with body abnormalities and even die during early embryonic development. In this study, we used whole genome bisulfite sequencing (WGBS) to investigate the genome-wide DNA methylation profiles in haploid females (1n-X) and males (1n-Y), and diploid females (2n-XX) and males (2n-XY) of tiger pufferfish (Takifugu rubripes), an economically important fish in China. A total of 96.32 Gb clean data was produced. Differentially methylated regions (DMRs) were found between haploids and diploids, which may be related to abnormal development and early embryonic death in haploids. There were 3,641 hyper-methylated differentially methylated genes (DMGs) and 2,179 hypo-methylated DMGs in haploid vs. diploid comparisons in both females and males. These DMGs were mainly related to genomic stability maintenance and cell cycle regulation. slf1, actr8, gas2, and pbrm1 genes were selected to validate the methylation sequencing. After combining the methylation data with the corresponding transcriptome data, we identified several genes, including guca2a, myoc, fezf2, rprml, telo2, s100a1, and marveld1, which exhibited differential expression levels modulated by DNA methylation. In conclusion, our study revealed different methylation and expression profiles between haploid and diploid T. rubripes for the first time. Several DMGs were identified between different ploidy levels, which may be related to haploid syndrome formation. The results expand the understanding of the effects of ploidy on the early development of teleosts and provide knowledge about target genes and networks to improve the survival rate of haploids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.