Identifying ordering in non-crystalline solids has been a focus of natural science since the publication of Zachariasen’s random network theory in 1932, but it still remains as a great challenge of the century. Literature shows that the hierarchical structures, from the short-range order of first-shell polyhedra to the long-range order of translational periodicity, may survive after amorphization. Here, in a piece of AlPO4, or berlinite, we combine X-ray diffraction and stochastic free-energy surface simulations to study its phase transition and structural ordering under pressure. From reversible single crystals to amorphous transitions, we now present an unambiguous view of the topological ordering in the amorphous phase, consisting of a swarm of Carpenter low-symmetry phases with the same topological linkage, trapped in a metastable intermediate stage. We propose that the remaining topological ordering is the origin of the switchable “memory glass” effect. Such topological ordering may hide in many amorphous materials through disordered short atomic displacements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.