Motivated by a recent experiment [A. Marguerite et al., Nature (London) 575, 628 (2019)] on imaging in graphene samples, we investigate theoretically the dissipation induced by resonant impurities in the quantum Hall regime. The impurity-induced forward scattering of electrons at quantum Hall edges leads to an enhanced phonon emission, which reaches its maximum when the impurity state is tuned to resonance by a scanning tip voltage. Our analysis of the effect of the tip potential on the dissipation reveals peculiar thermal rings around the impurities, consistent with experimental observations. Remarkably, this impurity-induced dissipation reveals nontrivial features that are unique for chiral one-dimensional systems such as quantum Hall edges. First, the dissipation is not accompanied by the generation of resistance. Second, this type of dissipation is highly nonlocal: A single impurity induces heat transfer to phonons along the whole edge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.