A series of imidazo[1,5-a][1,4]benzodiazepine esters have been synthesized with varying ester side chains and 8-position substituents. The affinities of these compounds were evaluated at both "diazepam-insensitive" (DI) and diazepam-sensitive (DS) subtypes of the benzodiazepine receptor (BZR). A profound steric effect of the 3-position ester side chain moiety was observed on ligand affinity at DI. In contrast, ester size had a less robust effect on ligand affinity at DS. The tert-butyl ester compound 8 displayed the highest affinity (Ki = 1.7 nM) for DI within a series of 8-chloro esters. Furthermore, halogens at the 8-position resulted in an enhancement of both ligand affinity and selectivity at DI among the series of tert-butyl esters examined. The 8-nitro derivative 23 and 8-isothiocyanato congener 25 had high affinities for both DI and DS but exhibited little subtype selectivity (10.8 and 2.7 nM at DI versus 14 and 3.7 nM at DS, respectively). The 8-azido tert-butyl ester 29 exhibited a significantly higher affinity (Ki = 0.43 nM) and selectivity (DI/DS ratio of 0.2) than the corresponding ethyl ester, the prototypic DI ligand 1 (Ro 15-4513). Among the compounds synthesized, 29 is the highest affinity ligand for DI described to date while its 8-bromo analog 18 is the most selective ligand (DI/DS ratio of 0.17) for this novel BZR subtype.
Using computer-aided conformational analysis, based on molecular dynamics simulation, cluster analysis, and Monte Carlo techniques, we have designed and synthesized compounds in which a benzyloxy substituent has been incorporated into a series of pyrazoloquinoline benzodiazepine receptor (BZR) ligands. Earlier studies had shown that the benzyloxy group could act as part of the agonist pharmacophoric determinant in the beta-carboline ring system. Furthermore, the agonist beta-carboline had been correlated with a binding site orientation and volume fit for an agonist 6-phenylimidazobenzodiazepine carboxylate. The present study was undertaken to determine whether the benzyloxy substituent could be used as an agonist pharmacophoric descriptor for the phenylpyrazolo[4,3-c]quinolin-3-one BZR ligands. The results of a determination of GABA shift ratios for the synthetic ligands indicate that 8-(benzyloxy)-2-phenylpyrazolo[4,3-c]quinolin-3-one can be predicted to be an agonist at the BZR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.