This paper introduces a propellant-free approach to mobility of an inspection or servicing vehicle. The approach is suitable for motion near the surface of non-ferromagnetic, conductive objects in orbit. This work considers the specifics of eddy-current interactions between a translating permanent magnet and the aluminum surfaces of spacecraft. Such an actuator moves within the body of an inspection vehicle, requiring that its motion remains limited if the vehicle is to continuously interact with the client spacecraft. Experimental verification on a low-friction air track verifies a model for attraction–repulsion dynamics at millimeter-scale initial separations in one dimension. Results show good agreement between the simulated and tested conditions and motivate extension of the model to more general cases. To bound the design space and relative distances at which this actuator is effective, this work identifies the required size, mass, and trajectories for repulsion that restores the actuator to its initial configuration. Results support the utility of eddy-current actuation for microsatellites at separations of millimeters to centimeters from their conductive clients. For such clients the actuator may enable relative mobility and achieve other objectives key to proximity operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.