We investigate the correlation between the distribution of galaxies and the predicted gravitational-wave background of astrophysical origin. We show that the large angular scale anisotropies of this background are dominated by nearby nonlinear structure, which depends on the notoriously hard to model galaxy power spectrum at small scales. In contrast, we report that the cross-correlation of this signal with galaxy catalogues depends only on linear scales and can be used to constrain the average contribution to the gravitational-wave background as a function of time. Using mock data based on a simplified model, we explore the effects of galaxy bias, angular resolution and the matter abundance on these constraints. Our results suggest that, when combined with galaxy surveys, the gravitational-wave background can be a powerful probe for both gravitational-wave merger physics and cosmology.
Soon, the combination of electromagnetic and gravitational signals will open the door to a new era of gravitational-wave (GW) cosmology. It will allow us to test the propagation of tensor perturbations across cosmic time and study the distribution of their sources over large scales. In this work, we show how machine-learning techniques can be used to reconstruct new physics by leveraging the spatial correlation between GW mergers and galaxies. We explore the possibility of jointly reconstructing the modified GW propagation law and the linear bias of GW sources, as well as breaking the slight degeneracy between them by combining multiple techniques. We show predictions roughly based on a network of Einstein Telescopes combined with a high-redshift galaxy survey (z ≲ 3). Moreover, we investigate how these results can be rescaled to other instrumental configurations. In the long run, we find that obtaining accurate and precise luminosity distance measurements (extracted directly from the individual GW signals) will be the most important factor to consider when maximizing the constraining power.
Searching for variations of nature's fundamental constants is a crucial step in our quest to go beyond our current standard model of fundamental physics. If they exist, such variations will be very likely driven by the existence of a new fundamental field. The Bekenstein model and its extensions introduce such a scalar field in a purely phenomenological way, inducing a variation of the fine-structure constant on cosmological scales. This theoretical framework is as simple and general as possible while still preserving all the symmetries of standard quantum electrodynamics. When allowing for couplings to the other sectors of the Universe, such as baryons, dark matter, and the cosmological constant, the Bekenstein model is expected to reproduce the low energy limits of several grand unification, quantum gravity, and higher dimensional theories. In this work, we constrain different versions of the Bekenstein model by confronting the full cosmological evolution of the field with an extensive set of astrophysical, cosmological, and local measurements. We show that couplings of the order of parts per million are excluded for all the cases considered, imposing strong restrictions on theoretical frameworks aiming to deal with variations of the fine-structure constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.