Tachyarrhythmia detection through RR interval analysis could improve performance of monitoring devices. In this paper a Poincaré plot-based image approach is presented. Three cardiac rhythms were analyzed in this study: normal sinus rhythm (NSR), atrial fibrillation (AF) and atrial bigeminy (AB). Using different MIT-BIH databases, 27955, 3363 and 76 images were generated for NSR, AF and AB respectively using a 2-minute window with 50 % overlap. The 80 % of the data available for each rhythm was used to create a reference rhythm image atlas. The remaining 20 % was classified into one of the three categories using mutual information. The process was iterated 10 times, in which images used to construct the atlas and used to create the test set were randomly selected. AF was correctly classified 94.12 %±0.45, AB 72.00 %±11.24 and NSR 80.70 %±0.54. The results of the present study suggest that Poincaré plot-based image analysis is a promising path for classifying different rhythms using only ventricular activity.
Objective This work presents an ECG classificator for variable leads as a contribution to the PhysioNet/CinC Challenge 2021. It aims to integrate deep and classic machine learning features into a single model, exploring the proper structure and training procedure. Approach From the initial 88253 signals, only 84210 were included. Low quality and unscored recordings were excluded. Three different database subsets of 40365 recording each were created by dividing in three normal sinus rhythm and sinus bradycardia recordings. Each subset was used to train a different model with shared architecture integrated as an ensemble to provide the final classification through major voting. Models contained a deep branch composed of a modified ResNet with dilation convolutional layers and squeeze and excitation Block that took as input windowed ECG signals. This was concatenated with a wide branch that integrated 20 cardiac rhythm features into a fully connected 3-layered network. Three different training steps were studied: just the deep branch (D), wide integration and training (D+W), and a final fine tuning of the deep branch posterior to wide training (D+W+D). Main Results Results obtained in a local test set formed by a an stratified 12.5% split of the given full datasetwere presented for 2-lead and 12-lead models. The best training method was the 3-step D+W+D procedure obtaining a challenge metric of 0.709 and 0.677 for 12 and 2-lead models respectively. Significance Integration of handcrafted features and deep learning model not only may increase the generalization capacity of the network but also provide a path to add explicit information into the classification decision process. To the best of our knowledge this is the first work studying the best training procedure to properly integrate both types of information for ECG signals classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.