Background: We conducted this systematic review and meta-analysis to address the crucial public health issue of the suspected association between air pollution exposure during pregnancy and the risk of infant mortality. Methods: We searched on MEDLINE ® databases among articles published until February, 2019 for case-control, cohort, and ecological studies assessing the association between maternal exposure to Nitrogen Dioxide (NO2) or Particular matter (PM) and the risk of infant mortality including infant, neonatal, and post-neonatal mortality for all-and specific-causes as well. Study-specific risk estimates were pooled according to random-effect and fixed-effect models. Results: Twenty-four articles were included in the systematic review and 14 of the studies were taken into account in the meta-analysis. We conducted the meta-analysis for six combinations of air pollutants and infant death when at least four studies were available for the same combination. Our systematic review has revealed that the majority of studies concluded that death risk increased with increased exposure to air pollution including PM10, PM2.5, and NO2. Our meta-analysis confirms that the risk of post-neonatal mortality all-causes for short-term exposure to PM10 increased significantly (pooled-OR = 1.013, 95% CI (1.002, 1.025). When focusing on respiratory-causes, the risk of post-neonatal death related to long-term exposure to PM10 reached a pooled-OR = 1.134, 95% CI (1.011, 1.271). Regarding Sudden Infant Death Syndrome (SIDS), the risk also increased significantly: pooled-OR = 1.045, 95% CI (1.01, 1.08) per 10 µg/m3), but no specific gestational windows of exposure were identified. Conclusion: In spite of a few number of epidemiological studies selected in the present literature review, our finding is in favor of a significant increase of infant death with the increase of air pollution exposure during either the pregnancy period or the first year of a newborn’s life. Our findings have to be interpreted with caution due to weaknesses that could affect the strength of the associations and then the formulation of accurate conclusions. Future studies are called to overcome these limitations; in particular, (i) the definition of infant adverse outcome, (ii) exposure assessment, and (iii) critical windows of exposure, which could affect the strength of association.
Several studies have found maternal exposure to particulate matter pollution was associated with adverse birth outcomes, including infant mortality and preterm birth. In this context, our study aims to quantify the air pollution burden of disease due to preterm birth complications and infant death in Paris, with particular attention to people living in the most deprived census blocks. Data on infant death and preterm birth was available from the birth and death certificates. The postal address of mother’s newborn was converted in census block number. A socioeconomic deprivation index was built at the census block level. Average annual ambient concentrations of PM10 were modelled at census block level using the ESMERALDA atmospheric modelling system. The number of infant deaths attributed to PM10 exposure is expressed in years of life lost. We used a three-step compartmental model to appraise neurodevelopmental impairment among survivors of preterm birth. We estimated that 12.8 infant deaths per 100,000 live births may be attributable to PM10 exposure, and about one third of these infants lived in deprived census blocks. In addition, we found that approximately 4.8% of preterm births could be attributable to PM10 exposure, and approximately 1.9% of these infants died (corresponding to about 5.75 deaths per 100,000 live birth). Quantification of environmental hazard-related health impacts for children at local level is essential to prioritizing interventions. Our study suggests that additional effort is needed to reduce the risk of complications and deaths related to air pollution exposure, especially among preterm births. Because of widespread exposure to air pollution, significant health benefits could be achieved through regulatory interventions aimed at reducing exposure of the population as a whole, and particularly of the most vulnerable, such as children and pregnant women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.