In this study we evaluated the ability of two wild strains of Azospirillum, A. lipoferum AZm5 and A. brasilense VS9, to produce ACC deaminase. We tested the effects of a deficiency and medium doses of nitrogenous fertilizers on the growth and physiology of tomato plants (Lycopersicon esculentum Mill cv. ACE VF55) inoculated with both Azospirillum strains independently. Tomato plants were evaluated by root elongation assay and grown in pot soil culture with different nitrogen levels (0 kg N ha -1 and 170 kg N ha -1 ). The root:shoot ratio (R:S) and some ecophysiological traits were determined after 42 days of plant growth. Results showed very different physiological characteristics in both strains. We found three relevant aspects related to the AZm5 strain: it produces high amounts of cytokinins, it contains the gene acdS, which encodes ACC deaminase, and it promotes plant growth. We conclude that AZm5 maybe useful to increase N uptake in N-deficient soil by production of cytokinins and the promotion of ACC deaminase activity, which favored leaf expansion and higher leaf N investment. Therefore, for tomato culture, a simultaneous biofertilization with AZm5 and a relatively low fertilization with N (170 kg N ha -1 ) to promote AZm5 activity could be advantageous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.