We propose a three-terminal structure to probe robust signatures of Majorana zero modes consisting of a quantum dot coupled to the normal metal, s-wave superconducting and Majorana Y-junction leads. The zero-bias differential conductance at zero temperature of the normal-metal lead peaks at 2e 2 /h, which will be deflected after Majorana braiding. We find that the effect of thermal broadening is significantly suppressed when the dot is on resonance. In the case that the energy level of the quantum dot is much larger than the superconducting gap, tunneling processes are dominated by Majorana-induced crossed Andreev reflection. Particularly, a novel kind of crossed Andreev reflection equivalent to the splitting of charge quanta 3e occurs after Majorana braiding.
A fast scheme to generate Greenberger-Horne-Zeilinger states between different cavities in circuit QED systems is proposed. To implement this scheme, we design a feasible experimental device with three qubits and three cavities. In this device, all the couplings between qubit and qubit, cavity and qubit are tunable and are independent with frequencies, and thus the shortcut to adiabaticity technique can be directly applied in our scheme. It is demonstrated that the GHZ state can be generated rapidly with high fidelity in our scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.