SummaryInflammatory bowel disease (IBD), a chronic intestinal inflammatory condition that affects millions of people worldwide, results in high morbidity and exorbitant health-care costs. The critical features of both innate and adaptive immunity are to control inflammation and dysfunction in this equilibrium is believed to be the reason for the development of IBD. miR-155, a microRNA, is up-regulated in various inflammatory disease states, including IBD, and is a positive regulator of T-cell responses.
We conclude that overexpression of PKM2 provides a selective growth advantage for PTC cells through activation of glycolysis. Aberrant PKM2 overexpression may serve as a novel biomarker and a potential treatment target for PTC. The BRAF mutation may contribute to alterations in the expression pattern of glycolytic enzymes such as PKM2.
The zinc finger protein 677 (ZNF677) belongs to the zinc finger protein family, which possesses transcription factor activity by binding sequence-specific DNA. Previous studies have reported its downregulated by promoter methylation in non-small cell lung cancer. However, its biological role and exact mechanism in human cancers, including thyroid cancer, remain unknown. In this study, we demonstrate that ZNF677 is frequently downregulated by promoter methylation in primary papillary thyroid cancers (PTC) and show that decreased expression of ZNF677 is significantly associated with poor patient survival. Ectopic expression of ZNF677 in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice and induced cell-cycle arrest and apoptosis. Conversely, knockdown of ZNF677 promoted thyroid cancer cell proliferation and colony formation. ZNF677 exerted its tumor suppressor functions in thyroid cancer cells through transcriptional repression of two targets CDKN3 and HSPB1 (or HSP27), thereby inhibiting phosphorylation and activation of Akt via distinct mechanisms. Taken together, our data show that ZNF677 functions as a tumor suppressor and is frequently silenced via promoter methylation in thyroid cancer. These findings report a tumor suppressive role of the zinc-finger protein ZNF677 in primary papillary thyroid cancer through inhibition of Akt phosphorylation. .
Estradiol (E2) promotes metastatic propensity. However, the detailed mechanism remains largely unknown. E-cadherin, vimentin, and MMP-9 play a dominant role in the metastatic process. We aimed to investigate the effects of E2 on metastatic potential of PTC cell line BCPAP and on E-cadherin, vimentin, and MMP-9 protein expression. PTC cell line BCPAP was evaluated for the presence of estrogen receptor (ER) by western blot analysis. The effects of E2, PPT (a potent ERα-selective agonist), and DPN (a potent ERβ-selective agonist) on modulation of metastatic phenotype were determined by using in vitro scratch wound assay and invasion assay. In addition, the effects on E-cadherin, vimentin, and matrix metalloproteinase-9 (MMP-9) protein expression were evaluated by Western blot analysis. We found that BCPAP cells expressed ERα and ERβ. E2 and PPT enhanced, but DPN inhibited, the migration and invasion of BCPAP cells in an in vitro experimental model system that is modulated by E-cadherin, vimentin, and MMP-9. These findings indicate that E2 induces the metastatic potential of BCPAP cells through ERα and ERβ. The two ER subtypes play differential roles in modulation of BCPAP cell metastasis and the related molecule expressions including E-cadherin, vimentin, and MMP-9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.