Rationale: Systemic inflammation has emerged as a key pathophysiological process that induces multiorgan injury and causes serious human diseases. Endothelium is critical in maintaining cellular and inflammatory homeostasis, controlling systemic inflammation, and progression of inflammatory diseases. We postulated that endothelium produces and releases endogenous soluble factors to modulate inflammatory responses and protect against systemic inflammation. Objective: To identify endothelial cell–released soluble factors that protect against endothelial barrier dysfunction and systemic inflammation. Methods and Results: We found that conditioned medium of endothelial cells inhibited cyclooxgenase-2 and interleukin-6 expression in macrophages stimulated with lipopolysaccharide. Analysis of conditioned medium extracts by liquid chromatography–mass spectrometry showed the presence of 5-methoxytryptophan (5-MTP), but not other related tryptophan metabolites. Furthermore, endothelial cell–derived 5-MTP suppressed lipopolysaccharide-induced inflammatory responses and signaling in macrophages and endotoxemic lung tissues. Lipopolysaccharide suppressed 5-MTP level in endothelial cell-conditioned medium and reduced serum 5-MTP level in the murine sepsis model. Intraperitoneal injection of 5-MTP restored serum 5-MTP accompanied by the inhibition of lipopolysaccharide-induced endothelial leakage and suppression of lipopolysaccharide- or cecal ligation and puncture–mediated proinflammatory mediators overexpression. 5-MTP administration rescued lungs from lipopolysaccharide-induced damages and prevented sepsis-related mortality. Importantly, compared with healthy subjects, serum 5-MTP level in septic patients was decreased by 65%, indicating an important clinical relevance. Conclusions: We conclude that 5-MTP belongs to a novel class of endothelium-derived protective molecules that defend against endothelial barrier dysfunction and excessive systemic inflammatory responses.
Objective— Vascular smooth muscle cell (VSMC) transformation to an osteochondrogenic phenotype is an initial step toward arterial calcification, which is highly correlated with cardiovascular disease–related morbidity and mortality. TLR2 (Toll-like receptor 2) plays a pathogenic role in the development of vascular diseases, but its regulation in calcification of arteries and VSMCs remains unclear. We postulate that TLR2-mediated inflammation participates in mediating atherosclerotic arterial calcification and VSMC calcification. Approach and Results— We found that ApoE −/− Tlr2 −/− genotype in mice suppressed high-fat diet–induced atherosclerotic plaques formation during initiation but progressively lost its preventative capacity, compared with ApoE −/− mice. However, TLR2 deficiency prohibited high-fat diet–induced advanced atherosclerotic calcification, chondrogenic metaplasia, and OPG (osteoprotegerin) downregulation in the calcified lesions. Incubation of VSMCs in a calcifying medium revealed that TLR2 agonists significantly increased VSMC calcification and chondrogenic differentiation. Furthermore, TLR2 deficiency suppressed TLR2 agonist–mediated VSMC chondrogenic differentiation and consequent calcification, which were triggered via the concerted actions of IL (interleukin)-6–mediated RANKL (receptor activator of nuclear factor κB ligand) induction and OPG suppression. Inhibition experiments with pharmacological inhibitors demonstrated that IL-6–mediated RANKL induction is signaled by p38 and ERK1/2 (extracellular signal-regulated kinase 1/2) pathways, whereas the OPG is suppressed via NF-κB (nuclear factor κB) dependent signaling mediated by ERK1/2. Conclusions— We concluded that on ligand binding, TLR2 activates p38 and ERK1/2 signaling to selectively modulate the upregulation of IL-6–mediated RANKL and downregulation of OPG. These signaling pathways act in concert to induce chondrogenic transdifferentiation of VSMCs, which in turn leads to vascular calcification during the pathogenesis of atherosclerosis.
Objective-Migration of vascular smooth muscle cells (VSMCs) from the media into intima contributes to the development of atherosclerosis. Gene deletion experiments implicate a role for toll-like receptor 2 (TLR2) in atherogenesis. However, the underlying mechanisms remain unclear. We postulate that TLR2 promotes VSMC migration by enhancing interleukin (IL)-6 production. Methods and Results-Migration assays revealed that TLR2 agonists promoted VSMC migration but not cell proliferation or viability. TLR2 deficiency or inhibition of TLR2 signaling with anti-TLR2 antibody suppressed TLR2 agonist-induced VSMC migration and IL-6 production, which was mediated via p38 mitogen-associated protein kinase and extracellular signal-regulated kinase 1/2 signaling pathways. Neutralizing anti−IL-6 antibodies impaired TLR2-mediated VSMC migration and formation of filamentous actin fiber and lamellipodia. Blockade of p38 mitogen-associated protein kinase or extracellular signal-regulated kinase 1/2 activation inhibited TLR2 agonist pam3CSK4-induced phosphorylation of cAMP response element−binding protein, which regulates IL-6 promoter activity through the cAMP response element site. Moreover, cAMP response element−binding protein small interfering RNA inhibited pam3CSK4-induced IL-6 production and VSMC migration. Additionally, Rac1 small interfering RNA inhibited pam3CSK4-induced VSMC migration but not IL-6 production. Conclusion-Our results suggest that on ligand binding, TLR2 activates p38 mitogen-associated protein kinase and extracellular signal-regulated kinase 1/2 signaling in VSMCs. These signaling pathways act in concert to activate cAMP response element−binding protein and subsequent IL-6 production, which in turn promotes VSMC migration via Rac1-mediated actin cytoskeletal reorganization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.