Anthrax lethal toxin (LT) is a major virulence factor of Bacillus anthracis. LT challenge suppresses platelet counts and platelet function in mice, however, the mechanism responsible for thrombocytopenia remains unclear. LT inhibits cellular mitogen-activated protein kinases (MAPKs), which are vital pathways responsible for cell survival, differentiation, and maturation. One of the MAPKs, the MEK1/2-extracellular signal-regulated kinase pathway, is particularly important in megakaryopoiesis. This study evaluates the hypothesis that LT may suppress the progenitor cells of platelets, thereby inducing thrombocytopenic responses. Using cord blood-derived CD34+ cells and mouse bone marrow mononuclear cells to perform in vitro differentiation, this work shows that LT suppresses megakaryopoiesis by reducing the survival of megakaryocytes. Thrombopoietin treatments can reduce thrombocytopenia, megakaryocytic suppression, and the quick onset of lethality in LT-challenged mice. These results suggest that megakaryocytic suppression is one of the mechanisms by which LT induces thrombocytopenia. These findings may provide new insights for developing feasible approaches against anthrax.
In tropical and subtropical regions, mosquito-borne dengue virus (DENV) infections can lead to severe dengue, also known as dengue hemorrhage fever, which causes bleeding, thrombocytopenia, and blood plasma leakage and increases mortality. Although DENV-induced platelet cell death was linked to disease severity, the role of responsible viral factors and the elicitation mechanism of abnormal platelet activation and cell death remain unclear. DENV and virion-surface envelope protein domain III (EIII), a cellular binding moiety of the virus particle, highly increase during the viremia stage. Our previous report suggested that exposure to such viremia EIII levels can lead to cell death of endothelial cells, neutrophils, and megakaryocytes. Here we found that both DENV and EIII could induce abnormal platelet activation and predominantly necrotic cell death pyroptosis. Blockages of EIII-induced platelet signaling using the competitive inhibitor chondroitin sulfate B or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK markedly ameliorated DENV- and EIII-induced thrombocytopenia, platelet activation, and cell death. These results suggest that EIII could be considered as a virulence factor of DENV, and that Nlrp3 inflammasome is a feasible target for developing therapeutic approaches against dengue-induced platelet defects.
Anthrax lethal toxin (LT), one of the primary virulence factors of Bacillus anthracis, causes anthrax-like symptoms and death in animals. Experiments have indicated that levels of erythrocytopenia and hypoxic stress are associated with disease severity after administering LT. In this study, the granulocyte colony-stimulating factor (G-CSF) was used as a therapeutic agent to ameliorate anthrax-LT- and spore-induced mortality in C57BL/6J mice. We demonstrated that G-CSF promoted the mobilization of mature erythrocytes to peripheral blood, resulting in a significantly faster recovery from erythrocytopenia. In addition, combined treatment using G-CSF and erythropoietin tended to ameliorate B. anthracis-spore-elicited mortality in mice. Although specific treatments against LT-mediated pathogenesis remain elusive, these results may be useful in developing feasible strategies to treat anthrax.
Emerging life threatening pathogens such as severe acute aspiratory syndrome-coronavirus (SARS-CoV), avian-origin influenzas H7N9, and the Middle East respiratory syndrome coronavirus (MERS-CoV) have caused a high case-fatality rate and psychological effects on society and the economy. Therefore, a simple, rapid, and safe method to investigate a therapeutic approach against these pathogens is required. In this study, a simple, quick, and safe cell adhesion inhibition assay was developed to determine the potential cellular binding site on the SARS-CoV spike protein. Various synthetic peptides covering the potential binding site helped to minimize further the binding motif to 10-25 residues. Following analyses, 2 peptides spanning the 436-445 and 437-461 amino acids of the spike protein were identified as peptide inhibitor or peptide vaccine candidates against SARS-CoV.
BackgroundRed blood cells are the most abundant cells in the blood that deliver oxygen to the whole body. Erythropoietin (EPO), a positive regulator of erythropoiesis, is currently the major treatment for chronic anemia. Granulocyte colony-stimulating factor (G-CSF) is a multifunctional cytokine and a well-known regulator of hematopoietic stem cell proliferation, differentiation, and mobilization. The use of EPO in combination with G-CSF has been reported to synergistically improve erythroid responses in a group of patients with myelodysplastic syndromes who did not respond to EPO treatment alone; however, the mechanism remains unclear.MethodsC57BL/6 J mice injected with G-CSF or EPO were used to compare the erythropoiesis status and the efficiency of erythroid mobilization by flow cytometry.ResultsIn this study, we found that G-CSF induced more orthochromatophilic erythroblast production than did EPO in the bone marrow and spleen. In addition, in contrast to EPO treatments, G-CSF treatments enhanced the efficiency of the mobilization of newly synthesized reticulocytes into peripheral blood. Our results demonstrated that the effects of G-CSF on erythropoiesis and erythrocytic mobilization were independent of EPO secretion and, in contrast to EPO, G-CSF promoted progression of erythropoiesis through transition of early stage R2 (basophilic erythroblasts) to late stage R4 (orthochromatophilic erythroblasts).ConclusionsWe demonstrate for the first time that G-CSF treatments induce a faster erythropoiesis-enhancing response than that of EPO. These findings suggest an alternative approach to treating acute anemia, especially when patients are experiencing a clinical emergency in remote areas without proper blood bank supplies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.