This study presents a driver identification system using voice analysis for a vehicle security system. The structure of the proposed system has three parts. The first procedure is speech pre-processing, the second is feature extraction of sound signals, and the third is classification of driver voice. Initially, a database of sound signals for several drivers was established. The volume and zero-crossing rate (ZCR) of sound are used to detect the voice end-point in order to reduce data computation. Then the Auto-correlation Function (ACF) and Average Magnitude Difference Function (AMDF) methods are applied to retrieve the voice pitch features. Finally these features are used to identify the drivers by a General Regression Neural Network (GRNN). The experimental results show that the development of this voice identification system can use fewer feature vectors of pitch to obtain a good recognition rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.