We use the Katona-Kierstead definition of a Hamiltonian cycle in a uniform hypergraph. A decomposition of complete \(k\)-uniform hypergraph \(K^{(k)}_{n}\) into Hamiltonian cycles was studied by Bailey-Stevens and Meszka-Rosa. For \(n\equiv 2,4,5\pmod 6\), we design an algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of \(K^{(3)}_{n}\) into 5-cycles has been presented for all admissible \(n\leq17\), and for all \(n=4^{m}+1\) when \(m\) is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we show if \(42~|~(n-1)(n-2)\) and if there exist \(\lambda=\frac{(n-1)(n-2)}{42}\) sequences \((k_{i_{0}},k_{i_{1}},\ldots,k_{i_{6}})\) on \(D_{all}(n)\), then \(K^{(3)}_{n}\) can be decomposed into 7-cycles. We use the method of edge-partition and cycle sequence. We find a decomposition of \(K^{(3)}_{37}\) and \(K^{(3)}_{43}\) into 7-cycles.
Abstract.On the basic of the definition of Hamiltonian cycle defined by Katona-Kierstead and Jianfang Wang independently. Some domestic and foreign researchers study the decomposition of complete 3-uniform hypergraph
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.