ZnO nanowire-layered basic zinc acetate (LBZA)/ZnO nanoparticle (NP) composite films with different NP occupying extents have been synthesized using a simple wet-chemical route, i.e., aligned ZnO nanowire (NW) array first formed by an aqueous chemical bath deposition (CBD) and then heterogeneous nucleation and growth of LBZA/ZnO NPs on the surface of ZnO NWs by another base-free CBD. The features of the composites from three-dimensional (3D) NW-nanosheet (NS) networks to dense NW-NP composite films and NW-NP composite films with flowerlike particles are able to be obtained easily by varying the NP growth period. X-ray diffraction (XRD) and cathodoluminescence (CL) analyses indicate that the LBZA fraction and defect concentration in the composite film are increased with the NP growth period in the base-free chemical bath solution. Shifts of the ZnO (002) diffraction peak and UV emission peak with the NP growth period are observed at the series of composite films. HRTEM analyses indicate that there is no epitaxial relationship between the ZnO NW and ZnO NPs, suggesting that heterogeneous nucleation of LBZA structure on the surface of the ZnO NWs is crucial for the formation of the NW-NP composite using the base-free route. Photovoltaic measurements of the ZnO NW-LBZA/ZnO NP composite dye-sensitized solar cells (DSSCs) show that the overall efficiency is affected by the LBZA fraction, defect concentration, and cracks within the NW-NP composite film.
In the present study, the thermal characteristics of spinel ferrites are reported. The thermal expansion coefficient of ferrites is slightly larger than that of silicon; furthermore, these ferrites all demonstrate capability to absorb microwave. Nevertheless, their thermal conductivity is relatively low. A copper plate is bonded to ferrite to provide a backing for heat spreading. Microstructure observation at the interface reveals no reaction phase. The thermal resistance at the copper-ferrite interface is low. With the bonding of metallic copper, the heat generated in ferrites by microwave absorbing is possible to be removed by the backing copper layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.