Abstract-Online reviews provide valuable information about products and services to consumers. However, spammers are joining the community trying to mislead readers by writing fake reviews. Previous attempts for spammer detection used reviewers' behaviors, text similarity, linguistics features and rating patterns. Those studies are able to identify certain types of spammers, e.g., those who post many similar reviews about one target entity. However, in reality, there are other kinds of spammers who can manipulate their behaviors to act just like genuine reviewers, and thus cannot be detected by the available techniques. In this paper, we propose a novel concept of a heterogeneous review graph to capture the relationships among reviewers, reviews and stores that the reviewers have reviewed. We explore how interactions between nodes in this graph can reveal the cause of spam and propose an iterative model to identify suspicious reviewers. This is the first time such intricate relationships have been identified for review spam detection. We also develop an effective computation method to quantify the trustiness of reviewers, the honesty of reviews, and the reliability of stores. Different from existing approaches, we don't use review text information. Our model is thus complementary to existing approaches and able to find more difficult and subtle spamming activities, which are agreed upon by human judges after they evaluate our results. 1
Federated Machine Learning (FML) creates an ecosystem for multiple parties to collaborate on building models while protecting data privacy for the participants. A measure of the contribution for each party in FML enables fair credits allocation. In this paper we develop simple but powerful techniques to fairly calculate the contributions of multiple parties in FML, in the context of both horizontal FML and vertical FML. For Horizontal FML we use deletion method to calculate the grouped instance influence. For Vertical FML we use Shapley Values to calculate the grouped feature importance. Our methods open the door for research in model contribution and credit allocation in the context of federated machine learning.
Online shopping reviews provide valuable information for customers to compare the quality of products, store services, and many other aspects of future purchases. However, spammers are joining this community trying to mislead consumers by writing fake or unfair reviews to confuse the consumers. Previous attempts have used reviewers’ behaviors such as text similarity and rating patterns, to detect spammers. These studies are able to identify certain types of spammers, for instance, those who post many similar reviews about one target. However, in reality, there are other kinds of spammers who can manipulate their behaviors to act just like normal reviewers, and thus cannot be detected by the available techniques. In this article, we propose a novel concept of review graph to capture the relationships among all reviewers, reviews and stores that the reviewers have reviewed as a heterogeneous graph. We explore how interactions between nodes in this graph could reveal the cause of spam and propose an iterative computation model to identify suspicious reviewers. In the review graph, we have three kinds of nodes, namely, reviewer, review, and store. We capture their relationships by introducing three fundamental concepts, the trustiness of reviewers, the honesty of reviews, and the reliability of stores, and identifying their interrelationships: a reviewer is more trustworthy if the person has written more honesty reviews; a store is more reliable if it has more positive reviews from trustworthy reviewers; and a review is more honest if many other honest reviews support it. This is the first time such intricate relationships have been identified for spam detection and captured in a graph model. We further develop an effective computation method based on the proposed graph model. Different from any existing approaches, we do not use an review text information. Our model is thus complementary to existing approaches and able to find more difficult and subtle spamming activities, which are agreed upon by human judges after they evaluate our results.
The AIE probe performs better than the ACQ probe in the heparin assay in terms of sensitivity and selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.