Osteoarthritis (OA) is a joint disorder characterized by the progressive degeneration of articular cartilage. The phenotype and metabolism behavior of chondrocytes plays crucial roles in maintaining articular cartilage function. Chondrocytes dedifferentiate and lose their cartilage phenotype after successive subcultures or inflammation and synthesize collagen I and X (COL I and COL X). Farnesol, a sesquiterpene compound, has an anti-inflammatory effect and promotes collagen synthesis. However, its potent restoration effects on differentiated chondrocytes have seldom been evaluated. The presented study investigated farnesol’s effect on phenotype restoration by examining collagen and glycosaminoglycan (GAG) synthesis from dedifferentiated chondrocytes. The results indicated that chondrocytes gradually dedifferentiated through cellular morphology change, reduced expressions of COL II and SOX9, increased the expression of COL X and diminished GAG synthesis during four passages of subcultures. Pure farnesol and hyaluronan-encapsulated farnesol nanoparticles promote COL II synthesis. GAG synthesis significantly increased 2.5-fold after a farnesol treatment of dedifferentiated chondrocytes, indicating the restoration of chondrocyte functions. In addition, farnesol drastically increased the synthesis of COL II (2.5-fold) and GAG (15-fold) on interleukin-1β-induced dedifferentiated chondrocytes. A significant reduction of COL I, COL X and proinflammatory cytokine prostaglandin E2 was observed. In summary, farnesol may serve as a therapeutic agent in OA treatment.
Most rotator cuff (RC) tears occur at the bone–tendon interface and cause disability and pain. Farnesol, a sesquiterpene compound, can exert antioxidative and anti-inflammatory effects and promote collagen synthesis. In this rabbit model, either commercial SurgiWrap membrane or hydrogel membranes containing various compositions of gellan gum, hyaluronic acid, and farnesol (hereafter GHF membranes) were applied to the tear site, and the repair of the cuff was examined 2 and 3 weeks afterward. The designed membranes swelled rapidly and adsorbed onto the tear site more readily and closely than the SurgiWrap membrane. The membranes degraded slowly and functioned as both a barrier and a vehicle of slow farnesol release during the repair period. Farnesol enhanced collagen production in myoblasts and tenocytes, and interleukin 6 and tumor necrosis factor α levels were modulated. Gross observations and histological examinations indicated that the GHF membranes impregnated with 4 mM farnesol resulted in superior RC repair. In sum, the slow release of farnesol from hydrogel membranes can be beneficial in the repair of RC injuries.
Acne vulgaris is a highly prevalent skin disorder requiring treatment and management by dermatologists. Antibiotics such as clindamycin are commonly used to treat acne vulgaris. However, from both medical and public health perspectives, the development of alternative remedies has become essential due to the increase in antibiotic resistance. Topical therapy is useful as a single or combined treatment for mild and moderate acne and is often employed as maintenance therapy. Thus, the current study investigated the anti-inflammatory, antibacterial, and restorative effects of sesquiterpene farnesol on acne vulgaris induced by Cutibacterium acnes (C. acnes) in vitro and in a rat model. The minimum inhibitory concentration (MIC) of farnesol against C. acnes was 0.14 mM, and the IC50 of 24 h exposure to farnesol in HaCaT keratinocytes was approximately 1.4 mM. Moreover, 0.8 mM farnesol exhibited the strongest effects in terms of the alleviation of inflammatory responses and abscesses and necrotic tissue repair in C. acnes-induced acne lesions; 0.4 mM farnesol and clindamycin gel also exerted similar actions after a two-time treatment. By contrast, nearly doubling the tissue repair scores, 0.4 mM farnesol displayed great anti-inflammatory and the strongest reparative actions after a four-time treatment, followed by 0.8 mM farnesol and a commercial gel. Approximately 2–10-fold decreases in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, found by Western blot analysis, were predominantly consistent with the histopathological findings and tissue repair scores. The basal hydroxypropyl methylcellulose (HPMC) gel did not exert anti-inflammatory or reparative effects on rat acne lesions. Our results suggest that the topical application of a gel containing farnesol is a promising alternative remedy for acne vulgaris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.