Chemotherapy (CTx)-induced premature ovarian failure (POF) in woman remains clinically irreversible. Amniotic fluid stem cells (AFSCs) have shown the potential to treat CTx-induced POF; however, the underlying mechanism is unclear. Here we demonstrate that AFSC-derived exosomes recapitulate the anti-apoptotic effect of AFSCs on CTx-damaged granulosa cells (GCs), which are vital for the growth of ovarian follicles. AFSC-derived exosomes prevent ovarian follicular atresia in CTx-treated mice via the delivery of microRNAs in which both miR-146a and miR-10a are highly enriched and their potential target genes are critical to apoptosis. The down-regulation of these two miRNAs in AFSC-derived exosomes attenuates the anti-apoptotic effect on CTx-damaged GCs in vitro. Further, the administration of these miRNAs recapitulates the effects both in vitro and in vivo, in which miR-10a contributes a dominant influence. Our findings illustrate that miR-10a has potential as a novel therapeutic agent for the treatment of POF.
Chemotherapy used to treat cancer may cause irreversible premature ovarian failure (POF). Of late, amniotic fluid stem cells (AFSCs) provide a novel source for regenerative medicine because of their primitive stage, low immunogenicity, and easy accessibility. In this study, we isolated AFSCs from transgenic mice that ubiquitously express enhanced green fluorescence protein (EGFP). These AFSCs exhibited morphologies, immunophenotypes, and mesoderm trilineage differentiation potentials similar to mesenchymal stem cells (MSCs). Further, AFSCs proliferated faster than MSCs and expressed OCT4, a marker for pluripotency. To investigate their potential in recovering fertility in POF model, AFSCs were transplanted into the ovaries of mice with POF six weeks post induction using chemotherapeutic drugs, busulfan and cyclophosphamide. AFSCs could rescue the reproductive ability of mice with POF by preventing follicle atresia and sustaining the healthy follicles. Notably, the transplanted AFSCs did not differentiate into granulosa and germline cells in vivo. After one month, the decreased numbers of transplanted AFSCs accompanied with the reduced beneficial effects indicated that the therapeutic efficacy were directly from AFSCs. These findings demonstrated the therapeutic effects of AFSCs and suggested the promise of AFSCs for treating infertility and POF caused by chemotherapy.
BackgroundWhile bone marrow (BM) is a rich source of mesenchymal stem cells (MSCs), previous studies have shown that MSCs derived from mouse BM (BMMSCs) were difficult to manipulate as compared to MSCs derived from other species. The objective of this study was to find an alternative murine MSCs source that could provide sufficient MSCs.Methodology/Principal FindingsIn this study, we described a novel type of MSCs that migrates directly from the mouse epiphysis in culture. Epiphysis-derived MSCs (EMSCs) could be extensively expanded in plastic adherent culture, and they had a greater ability for clonogenic formation and cell proliferation than BMMSCs. Under specific induction conditions, EMSCs demonstrated multipotency through their ability to differentiate into adipocytes, osteocytes and chondrocytes. Immunophenotypic analysis demonstrated that EMSCs were positive for CD29, CD44, CD73, CD105, CD166, Sca-1 and SSEA-4, while negative for CD11b, CD31, CD34 and CD45. Notably, EMSCs did not express major histocompatibility complex class I (MHC I) or MHC II under our culture system. EMSCs also successfully suppressed the proliferation of splenocytes triggered by concanavalin A (Con A) or allogeneic splenocytes, and decreased the expression of IL-1, IL-6 and TNF-α in Con A-stimulated splenocytes suggesting their anti-inflammatory properties. Moreover, EMSCs enhanced fracture repair, ameliorated necrosis in ischemic skin flap, and improved blood perfusion in hindlimb ischemia in the in vivo experiments.Conclusions/SignificancesThese results indicate that EMSCs, a new type of MSCs established by our simple isolation method, are a preferable alternative for mice MSCs due to their better growth and differentiation potentialities.
Epithelial-to-mesenchymal transition (EMT) is a transcriptionally governed process by which cancer cells establish a front-rear polarity axis that facilitates motility and invasion. Dynamic assembly of focal adhesions and other actin-based cytoskeletal structures on the leading edge of motile cells requires precise spatial and temporal control of protein trafficking. Yet, the way in which EMT-activating transcriptional programs interface with vesicular trafficking networks that effect cell polarity change remains unclear. Here, by utilizing multiple approaches to assess vesicular transport dynamics through endocytic recycling and retrograde trafficking pathways in lung adenocarcinoma cells at distinct positions on the EMT spectrum, we find that the EMT-activating transcription factor ZEB1 accelerates endocytosis and intracellular trafficking of plasma membrane-bound proteins. ZEB1 drives turnover of the MET receptor tyrosine kinase by hastening receptor endocytosis and transport to the lysosomal compartment for degradation. ZEB1 relieves a plus-end-directed microtubule-dependent kinesin motor protein (KIF13A) and a clathrin-associated adaptor protein complex subunit (AP1S2) from microRNA-dependent silencing, thereby accelerating cargo transport through the endocytic recycling and retrograde vesicular pathways, respectively. Depletion of KIF13A or AP1S2 mitigates ZEB1-dependent focal adhesion dynamics, front-rear axis polarization, and cancer cell motility. Thus, ZEB1-dependent transcriptional networks govern vesicular trafficking dynamics to effect cell polarity change.
The evolution of transformed cancer cells into metastatic tumors is, in part, driven by altered intracellular signaling downstream of receptor tyrosine kinases (RTKs). The surface levels and activity of RTKs are governed mainly through clathrin-mediated endocytosis (CME), endosomal recycling, or degradation. In turn, oncogenic signaling downstream of RTKs can reciprocally regulate endocytic trafficking by creating feedback loops in cells to enhance tumor progression. We previously showed that FCH/F-BAR and Double SH3 Domain-Containing Protein (FCHSD2) has a cancer-cell specific function in regulating CME in non-small-cell lung cancer (NSCLC) cells. Here, we report that FCHSD2 loss impacts recycling of the RTKs, epidermal growth factor receptor (EGFR) and proto-oncogene c-Met (MET), and shunts their trafficking into late endosomes and lysosomal degradation. Notably, FCHSD2 depletion results in the nuclear translocation of active extracellular signal-regulated kinase 1 and 2 (ERK1/2), leading to enhanced transcription and up-regulation of EGFR and MET. The small GTPase, Ras-related protein Rab-7A (Rab7), is essential for the FCHSD2 depletion-induced effects. Correspondingly, FCHSD2 loss correlates to higher tumor grades of NSCLC. Clinically, NSCLC patients expressing high FCHSD2 exhibit elevated survival, whereas patients with high Rab7 expression display decreased survival rates. Our study provides new insight into the molecular nexus for crosstalk between oncogenic signaling and RTK trafficking that controls cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.