The incompleteness of the fossil record obscures the origin of many of the more derived clades of vertebrates. One such group is the Ichthyopterygia, a clade of obligatory marine reptiles that appeared in the Early Triassic epoch, without any known intermediates. Here we describe a basal ichthyosauriform from the upper Lower Triassic (about 248 million years ago) of China, whose primitive skeleton indicates possible amphibious habits. It is smaller than ichthyopterygians and had unusually large flippers that probably allowed limited terrestrial locomotion. It also retained characteristics of terrestrial diapsid reptiles, including a short snout and body trunk. Unlike more-derived ichthyosauriforms, it was probably a suction feeder. The new species supports the sister-group relationships between ichthyosauriforms and Hupehsuchia, the two forming the Ichthyosauromorpha. Basal ichthyosauromorphs are known exclusively from south China, suggesting that the clade originated in the region, which formed a warm and humid tropical archipelago in the Early Triassic. The oldest unequivocal record of a sauropterygian is also from the same stratigraphic unit of the region.
We have found >10 in situ microdiamonds in thin sections of eclogites from the Dabie and Su-Lu regions of central eastern China since the first occurrence of microdiamond in eclogites from the Dabie Mountains (DMT) reported in 1992. The microdiamonds are found not only in the central part but also in the northern part of the DMT. Several free crystals have been recovered from the crushed eclogites from the central DMT. Most in situ microdiamonds are inclusions in garnets but a few larger ones are intergranular. Most of the diamondiferous eclogites in the central part of the DMT are associated with coesite. Most importantly, the observation of microdiamonds in northern Dabie lead us to question the supposition that this is a low-P metamorphic terrane. All the diamondiferous eclogites from both the north and central DMT are of continental affinity as demonstrated by their negative εNd values. Therefore, both the north and central eclogite belts in the DMT are considered to be from the deep subducted terrane. Five in situ microdiamonds and two free crystals are first reported in this paper. The dimensions of the in situ microdiamonds are 30–180 µm and the free crystals are up to 400–700 mm across. All the microdiamonds are confirmed as such by Raman spectroscopy. The results of an infrared spectroscopic investigation on two larger free crystals and two in situ microdiamonds show that all the microdiamonds from both the Dabie and Su-Lu regions are mixed types IaA and IaB diamonds and there is no indication of any synthetic microdiamonds in our samples because such synthetic microdiamonds are always rich in type Ib.
Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.