Figure 1: Our model transforms points sampled from a simple prior to realistic point clouds through continuous normalizing flows. The videos of the transformations can be viewed on our project website: https://www.guandaoyang.com/ PointFlow/. AbstractAs 3D point clouds become the representation of choice for multiple vision and graphics applications, the ability to synthesize or reconstruct high-resolution, high-fidelity point clouds becomes crucial. Despite the recent success of deep learning models in discriminative tasks of point clouds, generating point clouds remains challenging. This paper proposes a principled probabilistic framework to generate 3D point clouds by modeling them as a distribution of distributions. Specifically, we learn a two-level hierarchy of distributions where the first level is the distribution of shapes and the second level is the distribution of points given a shape. This formulation allows us to both sample shapes and sample an arbitrary number of points from a shape. Our generative model, named PointFlow, learns each level of the distribution with a continuous normalizing flow. The invertibility of normalizing flows enables the computation of the likelihood during training and * Equal contribution. allows us to train our model in the variational inference framework. Empirically, we demonstrate that PointFlow achieves state-of-the-art performance in point cloud generation. We additionally show that our model can faithfully reconstruct point clouds and learn useful representations in an unsupervised manner. The code is available at https: //github.com/stevenygd/PointFlow.
Evaluation metrics for image captioning face two challenges. Firstly, commonly used metrics such as CIDEr, ME-TEOR, ROUGE and BLEU often do not correlate well with human judgments. Secondly, each metric has well known blind spots to pathological caption constructions, and rulebased metrics lack provisions to repair such blind spots once identified. For example, the newly proposed SPICE correlates well with human judgments, but fails to capture the syntactic structure of a sentence. To address these two challenges, we propose a novel learning based discriminative evaluation metric that is directly trained to distinguish between human and machine-generated captions. In addition, we further propose a data augmentation scheme to explicitly incorporate pathological transformations as negative examples during training. The proposed metric is evaluated with three kinds of robustness tests and its correlation with human judgments. Extensive experiments show that the proposed data augmentation scheme not only makes our metric more robust toward several pathological transformations, but also improves its correlation with human judgments. Our metric outperforms other metrics on both caption level human correlation in Flickr 8k and system level human correlation in COCO. The proposed approach could be served as a learning based evaluation metric that is complementary to existing rule-based metrics.
Estimating fundamental matrices is a classic problem in computer vision. Traditional methods rely heavily on the correctness of estimated key-point correspondences, which can be noisy and unreliable. As a result, it is difficult for these methods to handle image pairs with large occlusion or significantly different camera poses. In this paper, we propose novel neural network architectures to estimate fundamental matrices in an end-to-end manner without relying on point correspondences. New modules and layers are introduced in order to preserve mathematical properties of the fundamental matrix as a homogeneous rank-2 matrix with seven degrees of freedom. We analyze performance of the proposed models using various metrics on the KITTI dataset, and show that they achieve competitive performance with traditional methods without the need for extracting correspondences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.