Yang, R, Shen, X, Wang, Y, Voisin, S, Cai, G, Fu, Y, Xu, W, Eynon, N, Bishop, DJ, and Yan, X. ACTN3 R577X gene variant is associated with muscle-related phenotypes in elite Chinese sprint/power athletes. J Strength Cond Res 31(4): 1107-1115, 2017-The ACTN3 R577X polymorphism (rs1815739) has been shown to influence athletic performance. The aim of this study was to investigate the prevalence of this polymorphism in elite Chinese track and field athletes, and to explore its effects on athletes' level of competition and lower-extremity power. We compared the ACTN3 R577X genotypes and allele frequencies in 59 elite sprint/power athletes, 44 elite endurance athletes, and 50 healthy controls from Chinese Han origin. We then subcategorized the athletes into international level and national level and investigated the effects of ACTN3 genotype on lower-extremity power. Genotype distribution of the sprint/power athletes was significantly different from endurance athletes (p = 0.001) and controls (p < 0.001). The frequency of the RR genotype was significantly higher in international-level than that in the national-level sprint/power athletes (p = 0.004), with no international-level sprint/power athletes with XX genotype. The best standing long jump and standing vertical jump results of sprint/power athletes were better in the RR than those in the RX + XX genotypes (p = 0.004 and p = 0.001, respectively). In conclusion, the ACTN3 R577X polymorphism influences the level of competition and lower-extremity power of elite Chinese sprint/power athletes. Including relevant phenotypes such as muscle performance in future studies is important to further understand the effects of gene variants on elite athletic performance.
This study objective was to evaluate gender differences in hematological, hormonal and fitness variables among youth swimmers and to explore relationships between erythrocyte indices and aerobic and anaerobic capacity. 137 girls and 171 boys participated in the study and were divided into three groups based on their training experience. Blood samples were obtained to determine red blood cell counts, hemoglobin concentration, hematocrit, and plasma erythropoietin and testosterone levels. VO2max was assessed using a submaximal cycle protocol. 76 girls and 102 boys also undertook a Wingate test to determine their peak anaerobic power. Boys had higher (p < 0.05) means than girls for all hematological variables except for erythropoietin and these variables demonstrated an increase with training in boys. The average VO2max in l∙min-1 and peak anaerobic power in watts were also higher in boys (2.91 ± 0.08 and 547 ± 28, respectively) than girls (2.25 ± 0.07 and 450 ± 26, respectively). Modest but significant (p < 0.05) correlations were found between VO2max and red blood cell counts (r = 0.252), hemoglobin concentration (r = 0.345), or hematocrit (r = 0.345) and between peak anaerobic power and red blood cell counts (r = 0.304), hemoglobin concentration (r = 0.319) or hematocrit (r = 0.351). This study revealed relatively lower yet age- and gender-appropriate hematological, hormonal and fitness indices in youth swimmers. The gender-related differences in erythrocyte indices seem unrelated to erythropoietin and may be explained by the higher testosterone levels seen in boys. Given their correlation to both aerobic and anaerobic capacity, erythrocyte indices may be used as part of talent identification for sports.
Background Body mass index (BMI) and skeletal age (SA) are important indicators of individual growth and maturation. Although the results have not been unified, most studies indicated that accelerated skeletal maturation is associated with overweight/obesity. However, there have so far been insufficient studies about the association between accelerated skeletal maturation and overweight/obesity in preschoolers, particularly Asian children. A cross-sectional study was conducted on Chinese children to verify the association between accelerated skeletal maturation and overweight/obesity at preschool age. Methods The study involved 1330 participants aged 3.1–6.6 years old (730 males and 600 females) in Shanghai, China. The skeletal age was determined according to the method of TW3-C RUS. Accelerated skeletal maturation was defined as relative SA (SA minus chronological age [CA]) ≥1.0 years. BMI was classified as thinness, normal weight, overweight, and obesity according to the International Obesity Task Force (IOTF) BMI cut-offs. The Chi-square was performed to determine the statistically significant difference in the frequency of accelerated skeletal maturation in BMI and age categories. The logistic regression model analyzed the association between accelerated skeletal maturation and overweight/obesity. Results The percentage of accelerated skeletal maturation increased with BMI (7.8% of children in thinness group had accelerated skeletal maturation; the percentage increased to 30.8% in obese group. x2 = 89.442, df = 3, P < 0.01) and age group (at age 3.5, 3.5% of participants had accelerated skeletal maturation; at age 6.0 years, this increased to 27.8%. x2 = 43.417, df = 5, P < 0.01). Logistic regression analysis showed that children with overweight and obesity are more likely to have accelerated skeletal maturation than children with normal weight after adjusting for gender and age (Overweight, odds ratio [OR] = 3.27, 95% confidence interval [CI]: 2.20–4.87; Obese, OR = 4.73, 95% CI: 2.99–7.48). Conclusions There is an association between accelerated skeletal maturation and overweight/obesity among preschool children. This study suggests that accelerated skeletal maturation might coexist with overweight/obesity in preschool children, and interventions, such as dietary modifications and increasing levels of physical activity, should be employed to prevent both accelerated skeletal maturation and overweight/obesity as early as preschool age.
Introduction: Physical fitness is an adaptive state that varies with an individual's growth and maturity status. Considering that the difference in skeletal maturity already existed among preschool children, this study was designed to determine the influence of skeletal age and chronological age on preschoolers' physical fitness performance.Methods: This cross-sectional study was conducted in 945 healthy preschoolers (509 males, 436 females) aged between 3.0 and 6.0 years in Shanghai, China. We used the method of TW3-C RUS to determine skeletal age. Chronological age was measured by subtracting the date of birth from the test date. Sit and reach, 2 × 10 m shuttle run test, standing long jump, tennis ball throw, 5 m jump on both feet, and balance beam walk were considered for physical fitness performance. Correlation coefficients and partial correlations adjusting height and weight were used to determine the relationships among the variables of skeletal age/ relative skeletal age, chronological age/relative chronological age, and physical fitness items.Results: Skill-related physical fitness was weakly to moderately associated with skeletal age (the absolute value of r: 0.225–0.508, p < 0.01) and was moderately to strongly associated with chronological age (the absolute value of r: 0.405–0.659, p < 0.01). Health-related physical fitness items (BMI and sit and reach) showed a fairly weak to no correlation with skeletal age and chronological age. After adjusting the height and weight, an extremely weak to no correlation was observed between skeletal age and both health- and skill-related physical fitness, and weak-moderate correlations were noted between chronological age and skill-related physical fitness (the absolute value of r: 0.220–0.419, p < 0.01). In children in Grade 1, skill-related physical fitness (except for balance beam walk) showed a weak to moderate correlation with relative chronological age (the absolute value of r: 0.227–0.464, p < 0.05).Conclusion: (1) both skeletal age and chronological age are associated with skill-related rather than health-related physical fitness performance, and after adjusting height and weight, chronological age, rather than skeletal age, is associated with skill-related physical fitness performance; (2) for preschool children, skill-related physical fitness performance is influenced by relative chronological age rather than individual differences in skeletal maturation, especially in the lower grades.
Background: Body mass index and skeletal age are important indicators of individual growth and maturation. The recognition of their association could contribute to the prevention of childhood obesity and accelerated skeletal maturation. This study aimed to examine the effects of overweight and obesity on accelerated skeletal maturation in preschool children. Methods: Participants included 1330 children aged 3.1-6.6 years. The main outcomes were skeletal age assessed by left hand-wrist radiograph, and body mass index classified as thinness, normal weight, overweight and obesity. Results: The percentage of accelerated skeletal maturation increased with body mass index ( x 2 = 89.442, df = 3, P <0.01) and age group ( x 2 = 43.417, df = 5, P <0.01). Logistic regression analysis showed a higher risk of accelerated skeletal maturation in children with overweight and obesity than children with normal weight after adjusting for gender and age (Overweight, OR = 3.27, 95% CI : 2.20-4.87; Obese, OR = 4.73, 95% CI : 2.99-7.48). Conclusions: Accelerated skeletal maturation was associated with overweight and obesity in preschool children, and its prevalence increased with age. These findings suggest that parents and child-health managers should be aware of an existing risk of accelerated skeletal maturation in preschool children with overweight and obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.