Rice was chosen as a model organism for genome sequencing because of its economic importance, small genome size, and syntenic relationship with other cereal species. We have constructed a bacterial artificial chromosome fingerprint-based physical map of the rice genome to facilitate the whole-genome sequencing of rice. Most of the rice genome ( approximately 90.6%) was anchored genetically by overgo hybridization, DNA gel blot hybridization, and in silico anchoring. Genome sequencing data also were integrated into the rice physical map. Comparison of the genetic and physical maps reveals that recombination is suppressed severely in centromeric regions as well as on the short arms of chromosomes 4 and 10. This integrated high-resolution physical map of the rice genome will greatly facilitate whole-genome sequencing by helping to identify a minimum tiling path of clones to sequence. Furthermore, the physical map will aid map-based cloning of agronomically important genes and will provide an important tool for the comparative analysis of grass genomes.
The Chinese chestnut (Castanea mollissima) carries resistance to Cryphonectria parasitica, the fungal pathogen inciting chestnut blight. The pathogen, introduced from Asia, devastated the American chestnut (Castanea dentata) throughout its native range early in the twentieth century. A highly informative genetic map of Chinese chestnut was constructed to extend genomic studies in the Fagaceae and to aid the introgression of Chinese chestnut blight resistance genes into American chestnut. Two mapping populations were established with three Chinese chestnut parents, 'Mahogany', 'Nanking', and 'Vanuxem', totaling 337 progeny. The transcriptome-based genetic map was created with 329 simple sequence repeat and 1,064 single nucleotide polymorphism markers all derived from expressed sequence tag sequences. Genetic maps for each parent were developed and combined to establish 12 consensus linkage groups spanning 742 cM, providing the the most comprehensive genetic map for a Fagaceae species to date. Over 75 % of the mapped markers from the Chinese chestnut consensus genetic map were placed on the physical map using overgo hybridization, providing a fully integrated genetic and physical map resource for Castanea spp. About half (57 %) of the Chinese chestnut genetic map could be assigned to regions of segmental homology with 58 % of the peach (Prunus persica) genome assembly. A three quantitative trait loci (QTL) model for blight resistance was verified using the new genetic markers and an existing interspecies (C. mollissima × C. dentata) F 2 mapping population. Two of the blight resistance QTLs in chestnut shared synteny with two QTLs for powdery mildew resistance in peach, indicating the potential conservation of disease resistance genes at these loci.
Summary Genomic comparisons of chordates, hemichordates, and echinoderms can inform hypotheses for the evolution of these strikingly different phyla from the last common deuterostome ancestor [1–5]. Since hox genes play pivotal developmental roles in bilaterian animals [6–8], we analyzed the Hox complexes of two hemichordate genomes. We find that Saccoglossus kowalevskii and Ptychodera flava both possess 12-gene clusters, with mir10 between hox4 and hox5, in 550kb and 452kb intervals, respectively. Genes hox1-9 of the clusters are in the same genomic order and transcriptional orientation as their orthologs in chordates, with hox1 at the 3′ end of the cluster. At the 5′ end, each cluster contains three posterior genes specific to Ambulacraria (the hemichordate-echinoderm clade), two forming an inverted terminal pair. In contrast, the echinoderm Strongylocentrotus purpuratus contains a 588kb cluster [9] of 11 orthologs of the hemichordate genes, ordered differently, plausibly reflecting rearrangements of an ancestral hemichordate-like ambulacrarian cluster. Hox clusters of vertebrates and the basal chordate amphioxus [10] have similar organization to the hemichordate cluster, but with different posterior genes. These results provide genomic evidence for a well-ordered complex in the deuterostome ancestor for the hox1-9/10 region, with the number and kind of posterior genes still to be elucidated.
Large-insert genomic bacterial artificial chromosome (BAC) libraries of two culturally and economically important oyster species, Crassostrea virginica and C. gigas, have been developed as part of an international effort to develop tools and reagents that will advance our ability to conduct genetic and genomic research. A total of 73,728 C. gigas clones with an average insert size of 152 kb were picked and arrayed representing an 11.8-fold genome coverage. A total of 55,296 clones with an average insert size of 150 kb were picked and arrayed for C. virginica, also representing an 11.8-fold genome coverage. The C. gigas and C. virginica libraries were screened with probes derived from selected oyster genes using high-density BAC colony filter arrays. The probes identified 4 to 25 clones per gene for C. virginica and 5 to 50 clones per gene for C. gigas. We conducted a preliminary analysis of genetic polymorphism represented in the C. gigas library. The results suggest that the degree of divergence among similar sequences is highly variable and concentrated in intronic regions. Evidence supporting allelic polymorphism is reported for two genes and allelic and/or locus specific polymorphism for several others. Classical inheritance studies are needed to confirm the nature of these polymorphisms. The oyster BAC libraries are publicly available to the research community on a cost-recovery basis at (www.genome.clemson.edu).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.