Dissimilar joining of molybdenum (Mo) to titanium (Ti) is of great significance to the design and fabrication of high-temperature facilities. However, few reports were found about fusion joining of these two metals. The objective of this paper is to assess the feasibility of laser beam welding (LBW) of 2 mm-thick molybdenum and titanium. The effects of laser beam offset on the laser dissimilar joint of pure molybdenum to pure titanium were analyzed in terms of microstructure, chemical composition, microhardness, and tensile behavior. The results showed that the weld appearance improved with the increase of the offset. The fusion zone was strengthened because of the solid solution of these two elements. The mechanical properties of samples increased firstly and then decreased with the increasing of offset. When the laser beam irradiated on the titanium plate and the center of the laser spot was 0.5 mm away from the Mo/Ti interface, the joint performed the highest tensile strength, which was about 70% that of titanium base metal. LBW was demonstrated to be a promising method to join dissimilar Mo/Ti joint.
There are two kinds of typical cross-section profiles for the fusion zone (FZ) of a laser welded thin section joint, i.e., a V-shaped cross-section and an H-shaped cross-section. Previous researches indicated that tensile strength of the V-shaped joint was lower than that of the H-shaped one due to the greater heterogeneity of strain distribution on the V-shaped joint during tensile process. In this work, impacts of the aspect ratio of FZ on the mechanical properties of laser welded thin section joints with an H-shaped cross-section profile were investigated. Welding conditions corresponding to two typical H-shaped joints (i.e., W narrower with a narrower FZ, and W wider with a wider FZ) were decided through a laser welding orthogonal experimental plan. Then, the microstructure and properties of both joints were examined and compared. The results show that the tensile strength of joint W narrower and joint W wider was about 72% and 80.9% that of the base metal, respectively. Both joints fractured in the FZ during tensile processes. The low-cycle fatigue life of the base metal, the joint W narrower and the joint W wider were 3377.5 cycles, 2825 cycles and 3155.3 cycles, respectively. By using high-speed imaging, it was found that the fatigue crack of joint W narrower initiated and propagated inside the fusion zone, while the fatigue crack of the joint W wider initiated at the edge of the base metal and propagated for a distance within the base metal before entering into the fusion zone. This work promoted our understanding about the influence of the weld bead shape on the properties of laser welded thin section joints.
This paper researched the fabrication of perovskite synrock by self-propagating high temperature synthesis (SHS) and the characterization of the products. This synthesis process is simpler, the fabricated synrock can immobilize waste loading up to 35wt% SrO with satisfied physical properties (density>4.2g•cm-3, open porosity<0.2%, Leach rate<1.0 g•m-2•d-1). The structure analyses by XRD and SEM/EDS show that the major phase is perovskite which well agrees with the design. It proves that SHS offer a suitable Sr-waste synroc which is favorable for
geological disposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.