In this paper, single-layer coated polyester–cotton composites were prepared using PU-2540 waterborne polyurethane resin as the adhesive, graphite and silicon carbide as functional particles, and adopting a coating technology on the plain polyester–cotton fabric. First, the single-layer graphite-coated polyester cotton composite was prepared with graphite as the functional particle, and the influence of graphite content on the reflection loss and shielding effectiveness was studied. When the applied electric field frequency is 1610 MHz and the graphite content is 40 wt%, the minimum reflection loss is −26 dB; when the applied electric field frequency is 39.9 MHz and the graphite content is 50 wt%, the maximum shielding effectiveness is 12 dB. Then the single-layer silicon carbide-coated polyester–cotton composite was prepared with silicon carbide as the functional particle, and the influence of silicon carbide content on the reflection loss and shielding effectiveness was studied. With the applied electric field in the range 500∼3000 MHz, the greater the content of silicon carbide, the smaller the reflection loss, the better the wave-absorbing ability, the larger the shielding effectiveness, and the better the shielding performance. Finally, the single-layer graphite/silicon carbide-coated polyester–cotton composites were prepared by doping graphite and silicon carbide in different proportions, and the influence of doping ratio on dielectric properties, reflection loss, and shielding effectiveness was investigated. The real part of the dielectric constant of the material was highest – that is, the polarization ability of the material was best when there were only graphite particles in the doping medium and the silicon carbide content was 0. The imaginary part of the dielectric constant and the tangent of loss angle of the material were the highest – that is, the loss and attenuation ability of the material were best – when the doping ratio of graphite to silicon carbide is 4:1. With the applied electric field in the range 500∼3000 MHz, and with increasing graphite content, the reflection loss of the material became smaller, showing an enhanced wave-absorbing property, and the shielding effectiveness of the material increased, showing an enhanced shielding performance.
Merwinite powders were synthesized by a sol-gel process. The bioactivity in vitro of merwinite was investigated by soaking the powders in simulated body fluid (SBF), the growth of hydroxyapatite(HAp) on the surface of the powder was evaluated in various time. It was found that hydroxyapatite was formed after soaking for 14 days. The results indicate that merwinite possessed apatite-formation ability might be a potential candidate biomaterial for hard tissue repair.
The ability of apatite to form on the surface of biomaterials in simulated body fluid (SBF) has been widely used to predict the bone-bonding ability of bioceramic and bioceramic/polymer composites in vivo. Porous β-tricalcium phosphate/poly(L-lactic acid) (β-TCP/PLLA) composite scaffold was synthesized by new method. The ability of inducing calcium phosphate (Ca-P) formation was compared in static simulated body fluid(sSBF) and dynamic simulated body fluid (dSBF). The Ca-P morphology and crystal structures were identified using SEM, X-ray diffraction and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the typical features of bone-like apatite formation on the surface and the inner pore wall of β-TCP/PLLA. Ca-P formation on scaffold surfaces in dSBF occurred slower than in sSBF and was more difficult with increasing flow rate of dSBF. The ability of apatite to form on β-TCP/PLLA was enhanced by effect of each other that has different degradable mechanism. Porous β-TCP/PLLA composite scaffold indicates good ability of Ca-P formation in vitro.
In bone tissue engineering, porous scaffolds served as the temporary matrix are often subjected to mechanical stress when implanted in the body. Based on this fact, the goal of this study was to examine the effects of mechanical loading on the in vitro degradation characteristics and kinetics of porous scaffolds in a custom-designed loading system. Porous Poly(L-lactic acid)/β-Tricalcium Phosphate (PLLA/β-TCP) composite scaffolds fabricated by using solution casting/compression molding/particulate leaching technique (SCP) were subjected to degradation in simulated body fluid (SBF) at 37°C for up to 6 weeks under the conditions: with and without static compressive loading, respectively. The results indicated that the increase of the porosity and decrease of the compressive strength under static compressive loading were slower than that of non-loading case, and so did the mass loss rate. It might be due to that the loading retarded the penetration, absorption and transfer of simulated body fluid. These data provide an important step towards understanding mechanical loading factors contributing to degradation.
The nano-size silver particles were prepared in polymer-protecting colloidal dispersion with silver nitride as the raw material, hydrazine hydrate as the reduction reagent and polyvinyl pirrolidone (PVP) as the protective solvent. The optimal conditions for the preparation process were studied experimentally as well. The influences from main factors, such as Ag+ concentration and ratio of hydrazine/AgNO3, on the particle size, appearance shape, particle aggregation condition and size distribution of nano-silver particles were also investigated. The results showed that the size of Ag particles prepared in this polymer-protecting system is less than 50 nm, and PVP can reduce the growing tendency of nano-size silver particles. Meanwhile, the antibacterial dope loaded nano-silver particles were prepared by wetting agent, dispersant, defoamer, etc. The antibacterial and bacteriostatic effects of the dope with or without nano-silver particles were tested with bacilli as the tested bacteria. The experiment results showed that the dope loaded nano-silver particles are of high practicality. Its antibacterial ratio is also up to 91.9% in one hour when the added dosage of nano-silver is 0.02%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.