Atmospheric water is one of the main water resources for plants in arid ecosystems. However, whether deep-rooted, tomentum-less desert trees can absorb atmospheric water via aerial organs and transport the water into their bodies remains poorly understood. In the present study, a woody, deep-rooted, tomentum-less plant, Haloxylon ammodendron (C.A. Mey.) Bunge, was selected as the experimental object to investigate the preconditions for and consequences of foliar water uptake. Plant water status, gas exchange, and 18 O isotopic signatures of the plant were investigated following a typical rainfall pulse and a high-humidity exposure experiment. The results showed that a high content of atmospheric water was the prerequisite for foliar water uptake by H. ammodendron in the arid desert region. After atmospheric water was absorbed via the assimilating branches, which perform the function of leaves due to leaf degeneration, the plant transported the water to the secondary branches and trunk stems, but not to the taproot xylem or the soil, based on the 18 O isotopic signatures of the specimen. Foliar water uptake altered the plant water status and gas exchange-related traits, i.e., water potential, stomatal conductance, transpiration rate, and instantaneous water use efficiency. Our results suggest that atmospheric water might be a subsidiary water resource for sustaining the survival and growth of deep-rooted plants in arid desert regions. These findings contribute to the knowledge of plant water physiology and restoration of desert plants in the arid regions of the planet.
Biomass allocation affects the ability of plants to acquire resources and nutrients; a limited allocation of nutrients, such as nitrogen and phosphorus, affects ecological processes. However, little research has been conducted on how plant allocation patterns change and on the trade-offs involved in allocation strategies when micro-habitat gradients exist. We selected a 3.6 km transect in the Ebinur Lake Wetland Natural Reserve of Xinjiang, China, to investigate the relationships between plant traits (biomass and N and P concentrations) of herbaceous plants and environmental factors (soil moisture, salinity and nutrient content), and to determine the allometric scaling of biomass and stoichiometric traits between the above- and below-ground plant parts. The results show that the biomass and stoichiometric traits of plants reflected both the change of micro-environment and the natural characteristics of plants. With a decrease of the soil water availability and salinity, above- and below-ground N and P concentrations decrease gradually; scaling relationships exist between above- and belowground plant parts, for biomass and N and P concentrations. Biomass allocation is influenced by soil nutrient ratios, and the allocation strategy tended to be conserved for N and variable for P. Second, the scaling relationships also show interspecific differences; all scaling exponents of Suaeda prostrata are larger than for other species and indicate a “tolerance” strategy, while other species tend to increase the below-ground biomass and N and P concentrations, i.e. a “capture” strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.