With the decreasing cost and availability of many newly developed bioinformatics pipelines, next‐generation sequencing (NGS) has revolutionized plant systematics in recent years. Genome skimming has been widely used to obtain high‐copy fractions of the genomes, including plastomes, mitochondrial DNA (mtDNA), and nuclear ribosomal DNA (nrDNA). In this study, through simulations, we evaluated the optimal (minimum) sequencing depth and performance for recovering single‐copy nuclear genes (SCNs) from genome skimming data, by subsampling genome resequencing data and generating 10 data sets with different sequencing coverage in silico. We tested the performance of four data sets (plastome, nrDNA, mtDNA, and SCNs) obtained from genome skimming based on phylogenetic analyses of the Vitis clade at the genus level and Vitaceae at the family level, respectively. Our results showed that optimal minimum sequencing depth for high‐quality SCNs assembly via genome skimming was about 10× coverage. Without the steps of synthesizing baits and enrichment experiments, coupled with incredibly low sequencing costs, we showcase that deep genome skimming (DGS) is as effective for capturing large data sets of SCNs as the widely used Hyb‐Seq approach, in addition to capturing plastomes, mtDNA, and entire nrDNA repeats. DGS may serve as an efficient and economical alternative and may be superior to the popular target enrichment/Hyb‐Seq approach.
The Eriobotrya-Rhaphiolepis (ER) clade consists of about 46 species distributed in East and Southeast Asia. Although Eriobotrya and Rhaphiolepis have been supported to form a clade, the monophyly of Eriobotrya and Rhaphiolepis at the genus level has never been well tested and their phylogenetic positions in Maleae still remain uncertain. This study aims to reconstruct a robust phylogeny of the ER clade in the framework of Maleae with a broad taxon sampling and clarify the phylogenetic relationship between Eriobotrya and Rhaphiolepis. This study employed sequences of the whole plastome (WP) and entire nuclear ribosomal DNA (nrDNA) repeats assembled from the genome skimming approach and included 83 samples representing 76 species in 32 genera of Rosaceae, especially Maleae. The Maximum Likelihood (ML) and Bayesian Analysis (BI) based on three datasets, i.e., WP, coding sequences of plastome (CDS), and nrDNA, strongly supported the paraphyly of Eriobotrya, within which Rhaphiolepis was nested. Our plastid tree supported the sister relationship between the ER clade and Heteromeles, and the nrDNA tree, however, did not resolve the phylogenetic placement of the ER clade in Maleae. Strong incongruence between the plastid and the nuclear trees is most likely explained by hybridization events, which may have played an important role in the evolutionary history of the ER clade. Molecular, morphological, and geographic evidence all supports the merge of Eriobotrya with Rhaphiolepis, which has the nomenclatural priority. We herein transferred 36 taxa of Eriobotrya to Rhaphiolepis. We also proposed a new name, Rhaphiolepis loquata B.B.Liu & J.Wen, for the economically important loquat, as the specific epithet "japonica" was pre-occupied in Rhaphiolepis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.