Programmable DNA nucleases such as TALENs and CRISPR/Cas9 are emerging as powerful tools for genome editing. Dual-fluorescent surrogate systems have been demonstrated by several studies to recapitulate DNA nuclease activity and enrich for genetically edited cells. In this study, we created a single-strand annealing-directed, dual-fluorescent surrogate reporter system, referred to as C-Check. We opted for the Golden Gate Cloning strategy to simplify C-Check construction. To demonstrate the utility of the C-Check system, we used the C-Check in combination with TALENs or CRISPR/Cas9 in different scenarios of gene editing experiments. First, we disrupted the endogenous pIAPP gene (3.0 % efficiency) by C-Check-validated TALENs in primary porcine fibroblasts (PPFs). Next, we achieved gene-editing efficiencies of 9.0-20.3 and 4.9 % when performing single- and double-gene targeting (MAPT and SORL1), respectively, in PPFs using C-Check-validated CRISPR/Cas9 vectors. Third, fluorescent tagging of endogenous genes (MYH6 and COL2A1, up to 10.0 % frequency) was achieved in human fibroblasts with C-Check-validated CRISPR/Cas9 vectors. We further demonstrated that the C-Check system could be applied to enrich for IGF1R null HEK293T cells and CBX5 null MCF-7 cells with frequencies of nearly 100.0 and 86.9 %, respectively. Most importantly, we further showed that the C-Check system is compatible with multiplexing and for studying CRISPR/Cas9 sgRNA specificity. The C-Check system may serve as an alternative dual-fluorescent surrogate tool for measuring DNA nuclease activity and enrichment of gene-edited cells, and may thereby aid in streamlining programmable DNA nuclease-mediated genome editing and biological research.
The role of canonical Wnt/β-catenin signaling in postnatal bone growth has not been fully defined. In the present studies, we generated β-catenin conditional knockout (KO) mice and deleted β-catenin in Col2-expressing chondrocytes and mesenchymal progenitor cells. Findings from analyzing the β-cateninCol2CreER KO mice revealed severe bone destruction and bone loss phenotype in epiphyseal bone, probably due to the increase in osteoclast formation and the accumulation of adipocytes in this area. In addition, we also found bone destruction and bone loss phenotype in vertebral bone in β-cateninCol2CreER KO mice. These findings indicate that β-catenin signaling plays a critical role in postnatal bone remodeling. Our study provides new insights into the regulation of epiphyseal bone homeostasis at postnatal stage.
Organ transplantation is the only curative treatment for patients with terminal organ failure, however, there is a worldwide organ shortage. Genetically modified pig organs and tissues have become an attractive and practical alternative solution for the severe organ shortage, which has been made possible by significant progress in xenotransplantation in recent years.The past several decades witnessed an expanding list of genetically engineered pigs due to technology advancements, however, the necessary combination of genetic modifications in pig for human organ xenotransplantation has not been determined. In the current study, we created a selective germline genome edited pig (SGGEP). The first triple xenoantigens (GGTA, B4GAL, and CAMH) knockout somatic cells were generated to serve as a prototype cells and then human proteins were expressed in the xenoantigen knockout cells, which include human complement system negative regulatory proteins (CD46, CD55, and CD59); human coagulation system negative regulatory proteins thrombomodulin (THBD); tissue factor pathway inhibitor (TFPI); CD39; macrophage negative regulatory proteins (human CD47); and natural killer cell negative regulatory human HLA-E. After the successful establishment of SGGEP by the nuclear tranfer, we engrafted SGGEP skin to NHP, up to 25 days graft survival without immunosuppressive drugs was observed. Because a pig skin graft does not impact the success of a subsequent allograft or autograft or vice versa, thus our SGGEP could have a great potential for clinical value to save severe and large area burn patients and the other human organ failure. Therefore, this combination of specific gene modifications is a major milestone and provides proof of concept to initiate investigator-initiated clinical trials (IITs) in severe burn patients with defined processes and governance measures in place and the other clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.