Because the accuracy of the existing airborne navigation is lacking in the polar region, it is difficult to ensure the safety and reliability of the aircraft when it is flying over the polar region. The integrated navigation system based on the inertial navigation technology uses multi-information fusion to assist collaborative navigation and obtain an indirect grid navigation algorithm that combines the azimuth navigation algorithm and the grid navigation algorithm to solve the existing problems. This paper analyzes the principle of the inertial navigation system in the polar region, the semiphysical simulation experiments are carried out by using the navigation theory and the background engineering, and the accuracies of the integrated navigation system of the indirect grid frame in the polar region and the integrated navigation system in the middle and low latitudes are consistent, which verifies the feasibility and effectiveness of the SINS/CNS/GPS integrated navigation system in the polar region. In addition, the paper provides the theoretical basis and the application of engineering to achieve the SINS/CNS/GPS integrated navigation system in the polar region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.