Chinese herbal medicine (CHM) has been used for treating insomnia for centuries. The most used CHM for insomnia was Polygonum multiflorum. However, the molecular mechanism for CHM preventing insomnia is unknown. Stilbene glucoside (THSG), an important active component of P. multiflorum, may play an important role for treating insomnia. To test the hypothesis, Kunming mice were treated with different dosages of THSG. To examine the sleep duration, a computer-controlled sleep-wake detection system was implemented. Electroencephalogram (EEG) and electromyogram (EMG) electrodes were implanted to determine sleep-wake state. RT-PCR and Western blot was used to measure the levels of lactate dehydrogenase (LDH) and saliva alpha amylase. Spearman's rank correlation coefficient was used to identify the strength of correlation between the variables. The results showed that THSG significantly prolonged the sleep time of the mice (p<0.01). THSG changed sleep profile by reducing wake and rapid eye movement (REM) period, and increasing non-REM period. RT-PCR and Western blot analysis showed that THSG could down-regulate the levels of LDH and saliva alpha amylase ( p<0.05). The level of lactate and glucose was positively related with the activity of LDH and saliva alpha amylase (p<0.05), respectively. On the other hand, the activities of LDH and amylase were negatively associated with sleep duration ( p<0.05). The levels of lactate and glucose affect sleep homeostasis. Thus, THSG may prevent insomnia by regulating sleep duration via LDH and salivary alpha amylase.
Objective. To investigate the effect of Xuan Bi Tong Yu Fang (XBTYF) on angiogenesis via the vascular endothelial growth factor- (VEGF-) Notch1/delta-like 4 (Dll4) pathway. Materials and Methods. Sixty Sprague-Dawley rats were randomly divided into six groups: control, sham-operated, myocardial ischemia model, and XBTYF treatment at 3.2, 1.6, and 0.8 g/kg. Electrocardiography was performed to evaluate the successful establishment of the model. Hematoxylin-eosin staining and transmission electron microscopy were carried out to observe the morphology and mitochondrial structure in myocardial cells, respectively. TUNEL staining was performed to assess the degree of cell apoptosis. The expression of VEGF-A, Notch1, Dll4, Bcl2, Bax, caspase 3, caspase 9, and cytochrome-c (Cyt-c) was observed by western blot. Results. XBTYF inhibited changes to the morphology and mitochondrial structure in cardiomyocyte and reduced cell apoptosis. Compared with the model group, XBTYF at all doses (3.2, 1.6, and 0.8 g/kg) reduced the expression of Notch1, Dll4, Bax, caspase 3, caspase 9, and Cyt-c, whereas expression of VEGF-A and Bcl2 was increased. Conclusion. XBTYF attenuated mitochondrial damage and cell apoptosis while promoting the angiogenesis of cardiomyocyte. The associated mechanism may be related to the VEGF-Notch1/Dll4 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.