BackgroundChemotherapy is an important component in the treatment paradigm for breast cancers. However, the resistance of cancer cells to chemotherapeutic agents frequently results in the subsequent recurrence and metastasis. Identification of molecular markers to predict treatment outcome is therefore warranted. The aim of the present study was to evaluate whether expression of circulating microRNAs (miRNAs) can predict clinical outcome in breast cancer patients treated with adjuvant chemotherapy.Methodology/Principal FindingsCirculating miRNAs in blood serum prior to treatment were determined by quantitative Real-Time PCR in 56 breast cancer patients with invasive ductal carcinoma and pre-operative neoadjuvant chemotherapy. Proliferating cell nuclear antigen (PCNA) immunostaining and TUNEL were performed in surgical samples to determine the effects of chemotherapy on cancer cell proliferation and apoptosis, respectively. Among the miRNAs tested, only miR-125b was significantly associated with therapeutic response, exhibiting higher expression level in non-responsive patients (n = 26, 46%; p = 0.008). In addition, breast cancers with high miR-125b expression had higher percentage of proliferating cells and lower percentage of apoptotic cells in the corresponding surgical specimens obtained after neoadjuvant chemotherapy. Increased resistance to anticancer drug was observed in vitro in breast cancer cells with ectopic miR-125b expression; conversely, reducing miR-125b level sensitized breast cancer cells to chemotherapy. Moreover, we demonstrated that the E2F3 was a direct target of miR-125b in breast cancer cells.Conclusions/SignificanceThese data suggest that circulating miR-125b expression is associated with chemotherapeutic resistance of breast cancer. This finding has important implications in the development of targeted therapeutics for overcoming chemotherapeutic resistance in novel anti-cancer strategies.
Recent advances in systemic and locoregional treatments for patients with unresectable or advanced hepatocellular carcinoma (HCC) have resulted in improved response rates. This has provided an opportunity for selected patients with initially unresectable HCC to achieve adequate tumor downstaging to undergo surgical resection, a 'conversion therapy' strategy. However, conversion therapy is a new approach to the treatment of HCC and its practice and treatment protocols are still being developed. Review the evidence for conversion therapy in HCC and develop consensus statements to guide clinical practice.Evidence review: Many research centers in China have accumulated significant experience implementing HCC conversion therapy. Preliminary findings and data have shown that conversion therapy represents an important strategy to maximize the survival of selected patients with intermediate stage to advanced HCC; however, there are still many urgent clinical and scientific challenges for this therapeutic strategy and its related fields. In order to summarize and learn from past experience and review current challenges, the Chinese Expert Consensus on Conversion Therapy for Hepatocellular Carcinoma (2021 Edition) was developed based on a review of preliminary experience and clinical data from Chinese and non-Chinese studies in this field and combined with recommendations for clinical practice. Sixteen consensus statements on the implementation of conversion therapy for HCC were developed. The statements generated in this review are based on a review of clinical evidence and real clinical experience and will help guide future progress in conversion therapy for patients with HCC.
Inhibitor of differentiation (Id)-1 and nuclear factor-kappa B (NF-κB) have been detected in many malignant tumors, and their presence has been correlated with the metastatic potential of these tumors. This study was undertaken to investigate the prognostic significance of the expression of Id-1 and the p65 subunit of NF-κB (NF-κB/p65) and the proteins' roles in the invasion process of nasopharyngeal carcinoma (NPC) cells. The messenger RNA (mRNA) and protein levels of Id-1 and NF-κB/p65 in normal nasopharyngeal epithelial cells and NPC cell lines were examined using reverse transcription-PCR and western blot analysis, whereas the mRNA and protein levels of Id-1 and NF-κB/p65 in clinical NPC specimens were determined by reverse transcription-PCR and immunohistochemistry. Short hairpin RNA (shRNA) was used to silence Id-1 and NF-κB/p65 to allow for the examination of matrix metalloproteinase (MMP)-9 expression and migratory capacity changes in CNE-2 cells. Multivariate Cox analysis revealed that elevated Id-1 expression was a significant independent predictor of the 5 year overall survival rate (hazards ratio = 16.720, P = 0.005). Furthermore, elevated expression of both Id-1 and NF-κB/p65 was associated with poor clinical survival (P = 0.049). Targeting Id-1 and NF-κB/p65 mRNA with shRNA in CNE-2 cells inhibited MMP-9 expression and decreased the migratory capacity of CNE-2 cells. In conclusion, Id-1 expression is a novel independent prognostic marker molecule that helps identify NPC patients with a poor prognosis. Additionally, combined analysis of Id-1 and NF-κB/p65 can be useful for identifying patients at risk for unfavorable clinical outcomes. Id-1 or/and NF-κB/p65 enhanced tumor cell migration, which is associated with the secretion of MMP-9.
Elevated de novo lipogenesis is considered to be a crucial factor in hepatocellular carcinoma (HCC) development. Herein, we identify ubiquitin-specific protease 22 (USP22) as a key regulator for de novo fatty acid synthesis, which directly interacts with deubiquitinates and stabilizes peroxisome proliferator-activated receptor gamma (PPARγ) through K48-linked deubiquitination, and in turn, this stabilization increases acetyl-CoA carboxylase (ACC) and ATP citrate lyase (ACLY) expressions. In addition, we find that USP22 promotes de novo fatty acid synthesis and contributes to HCC tumorigenesis, however, this tumorigenicity is suppressed by inhibiting the expression of PPARγ, ACLY, or ACC in in vivo tumorigenesis experiments. In HCC, high expression of USP22 positively correlates with PPARγ, ACLY or ACC expression, and associates with a poor prognosis. Taken together, we identify a USP22-regulated lipogenesis mechanism that involves the PPARγ-ACLY/ACC axis in HCC tumorigenesis and provide a rationale for therapeutic targeting of lipogenesis via USP22 inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.