Nano-porous monolithic SiO2 aerogel as insulation material was prepared from silicon alkoxide as the precursor materials, followed by ethanol supercritical drying in this paper. In order to improve the mechanical properties of silica aerogel monoliths, the ceramic fibers were mixed in the pure aerogel, or integrating inorganic fiber materials as skeleton materials with low thermal conductivity supporting. Instron 5566, 5500R Material Testing Machine was used to measure the mechanical intensity. SEM was used to characterize the morphology of the silica aerogel monoliths. The thermal properties of the silica aerogels were determined by using the Hot Disk device. The results show that new type composite materials had a low effect on the thermal conductivities of the silica aerogel monoliths, but improved the mechanical intensity clearly. It made a great progress in the practical application of the SiO2 aerogel monoliths.
This paper deals with the synthesis of ultralow density silica aerogels using tetramethyl orthosilicate (TMOS) as the precursor via sol-gel process followed by supercritical drying using acetonitrile solvent extraction. Ultralow density silica aerogels with 6 mg/cc of density was made for the molar ratio by this method. The microstructure and morphology of the ultralow density silica aerogels was characterized by the specific surface area, SBET, SEM, and the pore size distribution techniques. The results show that the ultralow density silica aerogel has the high specific surface area of 812m2/g. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.024 to 0.043W/ (m K) as temperature increased to 400°C, revealed an excellent heat insulation effect during thermal process.
Based on study of the power transmission system theory for hybrid car, a silent chain drive system which is used to transmit power between motor and gear box was designed. Using multi-body dynamic software RecurDyn, the dynamic behavior of the silent chain system was simulated, the chain tension, meshing impact load and instantaneous transmission ratio of the drive system under different velocity was analyzed. The results show that, at the whole speed range, the chain tension is always less than the chain rotation fatigue strength (including a safety factor of 1.3 times), its able to meet the working requirements, the instantaneous impact load when link plate meshing into sprocket relate to chain tension and sprocket rotation speed, the transmission error of silent chain system is within the allowable range and can meet the transmission requirement.
Super insulation and hydrophobic silica-based aerogels doped with TiO2 powder (8wt %) were successfully synthesized by using cost effective processing from Tetraeth oxysilane (TEOS). After aging and washing of wet gel, surface modification were modified using trimethylchlorosilane (TMCS) via one-step solvent exchange and surface modification. And the proper molar ratio of TMCS to pore water is 0.02. The microstructure and morphology of the ultralow density silica aerogels were characterized by the specific surface area, SBET, SEM, and the pore size distribution techniques. From the results, the obtained aerogel doped with TiO2 powder exhibited excellent physical properties with less than 10% volume shrinkage, extremely high specific surface area (652 m2/g) and super hydrophobicity (contact angle of~145°). It should be noted that TiO2 powders are physically embedded by SiO2 aerogel, and there is an obvious Ti–O–Ti and Si–O–Si bonding group based on structural analysis. The thermal properties of silica aerogel were determined using the Hot Disk device, composite aerogel exhibited thermal conductivities of 0.0426 W/m·K at 700°C, TiO2 powders effectively suppressed the intensified thermal radiations at high temperatures to achieve ultralow thermal conductivities. These results have important implications for designing novel structure of porous materials of high performance for silica aerogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.