A hydroperoxide-induced tyrosyl radical has been proposed as a key cyclooxygenase intermediate for the "basal" isoform of prostaglandin H synthase (PGHS-1). In the present study with the "inducible" isoform (PGHS-2), hydroperoxide was also found to generate a radical in high yield, a wide singlet at g = 2.0058 (29 G peak to trough). Reaction of PGHS-2 with a tyrosine-modifying reagent, tetranitromethane (TNM), resulted in cyclooxygenase inactivation and a much narrower radical EPR signal (22 G peak to trough). Addition of a cyclooxygenase inhibitor, nimesulide, similarly resulted in a narrow PGHS-2 radical. In PGHS-1, cyclooxygenase inhibition by tyrosine nitration with TNM or by active site ligands leads to generation of a narrow EPR instead of a wide EPR, with both signals originating from authentic tyrosyl radicals, indicating that the hydroperoxide-induced radicals in PGHS-2 are also tyrosyl radicals. Treatment of PGHS-2 with aspirin (acetyl salicylic acid, ASA) was previously shown to result in acetylation of a specific serine residue, cyclooxygenase inhibition, and increased lipoxygenase activity. Acetylation of PGHS-1 by ASA, in contrast, inhibited both lipoxygenase and cyclooxygenase activity. We now have found the ASA-treated PGHS-2 radical to be indistinguishable from that in control PGHS-2. Addition of nimesulide to ASA-treated PGHS-2 inhibited the lipoxygenase and resulted in a narrow radical EPR like that seen in PGHS-2 treated with TNM or nimesulide alone. Retention of PGHS-2 oxygenase activity was thus associated with retention of the native radical, and loss of activity was associated with alteration of the radical. Both native and ASA-treated PGHS-2 produced only the R stereoisomer of 11- and 15-HETE, demonstrating that the lipoxygenase stereochemistry was not changed by ASA. Native and ASA-treated PGHS-2 had lipoxygenase K(m) values considerably higher than that of the control PGHS-2 cyclooxygenase. Taken together, these results suggest that the same PGHS-2 tyrosyl radical serves as the oxidant for both cyclooxygenase and lipoxygenase catalysis and that acetylation of PGHS-2 by ASA favors arachidonate binding in an altered conformation which results in abstraction of the pro-R hydrogen from C13 and formation of 11(R)- and 15(R)-HETE.
A tyrosyl radical generated in the peroxidase cycle of prostaglandin H synthase-1 (PGHS-1) can serve as the initial oxidant for arachidonic acid (AA) in the cyclooxygenase reaction. Peroxides also induce radical formation in prostaglandin H synthase-2 (PGHS-2) and in PGHS-1 reconstituted with mangano protoporphyrin IX (MnPGHS-1), but the EPR spectra of these radicals are distinct from the initial tyrosyl radical in PGHS-1. We have examined the ability of the radicals in PGHS-2 and MnPGHS-1 to oxidize AA, using single-turnover EPR studies. One wide singlet tyrosyl radical with an overall EPR line width of 29 -31 gauss (G) was generated by reaction of PGHS-2 with ethyl hydroperoxide. Anaerobic addition of AA to PGHS-2 immediately after formation of this radical led to its disappearance and emergence of an AA radical (AA⅐) with a 7-line EPR, substantiated by experiments using octadeuterated AA. Subsequent addition of oxygen resulted in regeneration of the tyrosyl radical. In contrast, the peroxide-generated radical (a 21G narrow singlet) in a Y371F PGHS-2 mutant lacking cyclooxygenase activity failed to react with AA. The peroxide-generated radical in MnPGHS-1 exhibited a line width of 36 -38G, but was also able to convert AA to an AA⅐ with an EPR spectrum similar to that found with PGHS-2. These results indicate that the peroxide-generated radicals in PGHS-2 and MnPGHS-1 can each serve as immediate oxidants of AA to form the same carbon-centered fatty acid radical that subsequently reacts with oxygen to form a hydroperoxide. The EPR data for the AA-derived radical formed by PGHS-2 and MnPGHS-1 could be accounted for by a planar pentadienyl radical with two strongly interacting -protons at C10 of AA. These results support a functional role for peroxide-generated radicals in cyclooxygenase catalysis by both PGHS isoforms and provide important structural characterization of the carboncentered AA⅐.
The rapid development of modern electrical equipment toward miniaturization and high power puts forward stringent requirements to the mechanical reliability, dielectric property, and heat resistance of electrical insulating materials. Simultaneous integration of all these properties for mica-based materials remains unresolved. Herein, inspired by the three-dimensional (3D) chitin nanofiber framework within the layered architecture of natural nacre, we report a large-area layered mica-based nanopaper containing a 3D aramid nanofiber framework, which is prepared by a sol−gel−film transformation process. The coupling of 3D aramid nanofiber framework and oriented mica nanoplatelets imparts the nanopaper with good mechanical strength, particularly outstanding ductility (close to 80%) and toughness (up to 109 MJ m −3 ), which are 4−240 and 6−220 times higher than those of all other nacre-mimetics. Meanwhile, the excellent mechanical properties are integrated with high dielectric strength (164 kV mm −1 ), excellent heat resistance (T g = 268 °C), good solvent resistance, and nonflammability, much better than conventional mica-based materials. Additionally, we successfully demonstrate its continuous production in the form of nanotape. The fabulous multiproperty combination and continuous production capability render the mica-based nanopaper a very promising electrical insulating material in miniaturized high-power electrical equipment.
ATP2C1 gene codes for the secretory pathway Ca2+/Mn2+-ATPase pump type 1 (SPCA1) localizing at the golgi apparatus. Mutations on the human ATP2C1 gene, causing decreased levels of the SPCA1 expression, have been identified as the cause of the Hailey–Hailey disease, a rare skin disorder. In the last few years, several mutations have been described, and here we summarize how they are distributed along the gene and how missense mutations affect protein expression. SPCA1 is expressed in four different isoforms through alternative splicing of the ATP2C1 gene and none of these isoforms is differentially affected by any of these mutations. However, a better understanding of the tissue specific expression of the isoforms, their localization along the secretory pathway, their specific binding partners and the role of the C-terminal tail making isoforms different from each other, will be future goals of the research in this field.
BackgroundAlthough metformin, a first-line drug for treating diabetes, may play an important role in inhibition of epithelial ovarian cancer cell growth and cancer stem cells (CSCs), metformin at low dose showed less effect on the proliferation of ovarian cancer cells. In this study, we evaluated the effect of metformin at low dose on ovarian CSCs in order to understand the molecular mechanisms underlying.MethodsThe inhibitory effects of metformin at los dose on proliferation and population of ovarian cancer cells including SKOV3 and A2780 were assessed by cell proliferation assay and flow cytometry. Quantitative real-time PCR assay on expression of Bcl-2, Survivin and Bax was performed to determine the effect of metformin at low dose on epithelial-mesenchymal transition (EMT) of cancer cells and CSCs. Tumor sphere formation assay was also performed to evaluate the effect of metformin on spheres forming ability of CSCs. The therapeutic efficacy and the anti-CSC effects of metformin at low dose were investigated by using both SKOV3 cells and primary tumor xenografts. In addition, the CSC frequency and EMT in tumor xenograft models were also assessed by flow cytometry and quantitative real-time PCR.ResultsMetformin at low dose did not affect the proliferation of ovarian cancer cells. However, it inhibited population of CD44+CD117+ selectively, neither CD133+ nor ALDH+ cells. It suppressed expression of snail2, twist and vimentin significantly in cancer cells and CD44+CD117+ CSCs in vitro. Low dose of metformin reduced survivin expression in CSCs. Low concentrations of metformin inhibited the secondary and the tertiary tumor sphere formation, decreased SKOV3 and primary ovarian tumor xenograft growth, enhanced the anticancer effect of cisplatin, and lowered the proportion of CD44+CD117+ CSCs in the xenograft tissue. Metformin was also associated with a reduction of snail2, twist, and vimentin in CD44+CD117+ ovarian CSCs in vivo.ConclusionsOur results implicate that metformin at low dose inhibits selectively CD44+CD117+ ovarian CSCs through inhibition of EMT and potentiates the effect of cisplatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.