Monofluorinated alkyl compounds are of great importance in pharmaceuticals, agrochemicals and materials. Herein, we describe a direct nickel‐catalyzed monofluoromethylation of unactivated alkyl halides using a low‐cost industrial raw material, bromofluoromethane, by demonstrating a general and efficient reductive cross‐coupling of two alkyl halides. Results with 1‐bromo‐1‐fluoroalkane also demonstrate the viability of monofluoroalkylation, which further established the first example of reductive C(sp3)‐C(sp3) cross‐coupling fluoroalkylation. These transformations demonstrate high efficiency, mild conditions, and excellent functional‐group compatibility, especially for a range of pharmaceuticals and biologically active compounds. Mechanistic studies support a radical pathway. Kinetic studies reveal that the reaction is first‐order dependent on catalyst and alkyl bromide whereas the generation of monofluoroalkyl radical is not involved in the rate‐determining step. This strategy provides a general and efficient method for the synthesis of aliphatic fluorides.
A visible-light-mediated (phenylsulfonyl)difluoromethylation of styrenes has been developed to afford both ATRA and heck-type products by simply tuning the bases.
A nickel-catalyzed direct trifluoroethylation of aryl iodides with an industrial raw material CF 3 CH 2 I has been developed, demonstrating high efficiency, excellent functional-group compatibility, especially with large sterically hindered groups. The key to success is the combination of nickel with readily available nitrogen and phosphine ligands. The powerful potential of this strategy is further demonstrated by the late-stage modification of several derived bioactive molecules.
Monofluorinated alkyl compounds are of great importance in pharmaceuticals, agrochemicals and materials. Herein, we describe a direct nickel‐catalyzed monofluoromethylation of unactivated alkyl halides using a low‐cost industrial raw material, bromofluoromethane, by demonstrating a general and efficient reductive cross‐coupling of two alkyl halides. Results with 1‐bromo‐1‐fluoroalkane also demonstrate the viability of monofluoroalkylation, which further established the first example of reductive C(sp3)‐C(sp3) cross‐coupling fluoroalkylation. These transformations demonstrate high efficiency, mild conditions, and excellent functional‐group compatibility, especially for a range of pharmaceuticals and biologically active compounds. Mechanistic studies support a radical pathway. Kinetic studies reveal that the reaction is first‐order dependent on catalyst and alkyl bromide whereas the generation of monofluoroalkyl radical is not involved in the rate‐determining step. This strategy provides a general and efficient method for the synthesis of aliphatic fluorides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.