The mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA, but not protein, for transcriptional specifiers of both deep and superficial layer cortical neurons. Some of these mRNAs, including the superficial versus deep layer neuron transcriptional regulators Brn1 and Tle4, are translationally repressed by their association with the RNA-binding protein Pumilio2 (Pum2) and the 4E-T protein. Disruption of these repressive complexes in RPs mid-neurogenesis by knocking down 4E-T or Pum2 causes aberrant co-expression of deep layer neuron specification proteins in newborn superficial layer neurons. Thus, cortical RPs are transcriptionally primed to generate diverse types of neurons, and a Pum2/4E-T complex represses translation of some of these neuronal identity mRNAs to ensure appropriate temporal specification of daughter neurons.
Here, we have addressed the mechanisms that determine genesis of the correct numbers of neurons during development, focusing on the embryonic cortex. We identify in neural precursors a repressive complex involving eIF4E1 and its binding partner 4E-T that coordinately represses translation of proteins that determine neurogenesis. This eIF4E1/4E-T complex is present in granules with the processing body proteins Lsm1 and Rck, and disruption of this complex causes premature and enhanced neurogenesis and neural precursor depletion. Analysis of the 4E-T complex shows that it is highly enriched in mRNAs encoding transcription factors and differentiation-related proteins. These include the proneurogenic bHLH mRNAs, which colocalize with 4E-T in granules and whose protein products are aberrantly upregulated following knockdown of eIF4E, 4E-T, or processing body proteins. Thus, neural precursors are transcriptionally primed to generate neurons, but an eIF4E/4E-T complex sequesters and represses translation of proneurogenic proteins to determine appropriate neurogenesis.
Valosin containing protein (VCP)/p97 plays various important roles in cells. Moreover, elevated expression of VCP in hepatocellular carcinoma (HCC) is correlated with increased incidence of recurrence. But the role of VCP in HCC progression in vitro and in vivo is unclear. And there are few reports about the regulation mechanism on the expression of VCP in HCC. In this study, it was identified that the level of VCP was frequently increased in human HCC tissues. In addition, down-regulation of VCP with siRNAs could dramatically suppress the genesis and progression of tumor in vivo. It was found that miR-129-5p directly inhibited the expression of VCP in several HCC cell lines. Meanwhile, the level of VCP in HCC tissues was negatively associated with the level of miR-129-5p. Our further investigation showed that the enhanced expression of miR-129-5p also suppressed tumor growth in vivo. Moreover, it was revealed that miR-129-5p could inhibit the degradation of IκBα and increase the apoptosis and reduce the migration of HCC cells by suppressing the expression of VCP. Our results revealed that the expression of VCP was directly regulated by miR-129-5p and this regulation played an important role in the progression of HCC.
The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface carotenoid pigments. The hfq mutant was more resistant to oxidative stress but the pathogenicity of the mutant was reduced. We reveal that the Hfq protein can be detected only in some S. aureus strains. Using microarray and qRT-PCR, we identified 116 genes in the hfq mutant which had differential expression from the wild type, most of which are related to the phenotype and virulence of S. aureus. Among the 116 genes, 49 mRNAs can specifically bind Hfq protein, which indicates that Hfq also acts as an RNA binding protein in S. aureus. Our data suggest that Hfq protein of S. aureus is a multifunctional regulator involved in stress and virulence.
The mechanisms that regulate the establishment of adult stem cell pools during normal and perturbed mammalian development are still largely unknown. Here, we asked whether a maternal cytokine surge, which occurs during human maternal infections and has been implicated in cognitive disorders, might have long-lasting consequences for neural stem cell pools in adult progeny. We show that transient, maternally administered interleukin-6 (IL-6) resulted in an expanded adult forebrain neural precursor pool and perturbed olfactory neurogenesis in offspring months after fetal exposure. This increase is likely the long-term consequence of acute hyperactivation of an endogenous autocrine/paracrine IL-6-dependent self-renewal pathway that normally regulates the number of forebrain neural precursors. These studies therefore identify an IL-6-dependent neural stem cell self-renewal pathway in vivo, and support a model in which transiently increased maternal cytokines can act through this pathway in offspring to deregulate neural precursor biology from embryogenesis throughout life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.