In order to study the biological activities of tea preparations and purified tea polyphenols, their growth inhibitory effects were investigated using four human cancer cell lines. Growth inhibition was measured by [3H]thymidine incorporation after 48 h of treatment. The green tea catechins (-)-epigallocatechin-3-gallate (EGCG) and (-)-epigallocatechin (EGC) displayed strong growth inhibitory effects against lung tumor cell lines H661 and H1299, with estimated IC50 values of 22 microM, but were less effective against lung cancer cell line H441 and colon cancer cell line HT-29 with IC50 values 2- to 3-fold higher. (-)-Epicatechin-3-gallate, had lower activities, and (-)-epicatechin was even less effective. Preparations of green tea polyphenols and theaflavins had higher activities than extracts of green tea and decaffeinated green tea. The results suggest that the growth inhibitory activity of tea extracts is caused by the activities of different tea polyphenols. Exposure of H661 cells to 30 microM EGCG, EGC or theaflavins for 24 h led to the induction of apoptosis as determined by an annexin V apoptosis assay, showing apoptosis indices of 23, 26 and 8%, respectively; with 100 microM of these compounds, the apoptosis indices were 82, 76 and 78%, respectively. Incubation of H661 cells with EGCG also induced a dose-dependent formation of H2O2. Addition of H2O2 to H661 cells caused apoptosis in a manner similar to that caused by EGCG. The EGCG-induced apoptosis in H661 cells was completely inhibited by exogenously added catalase (50 units/ml). These results suggest that tea polyphenol-induced production of H2O2 may mediate apoptosis and that this may contribute to the growth inhibitory activities of tea polyphenols in vitro.
Many plant polyphenolic compounds have been shown to have cancer-preventing activities in laboratory studies. For example, tea and tea preparations have been shown to inhibit tumorigenesis in a variety of animal models of carcinogenesis, involving organ sites such as the skin, lungs, oral cavity, esophagus, stomach, liver, pancreas, small intestine, colon, and prostate. In some of these models, inhibitory activity was demonstrated when tea was administered during the initiation, promotion, or progression stage of carcinogenesis. The cancer-preventing activities of these and other polyphenols, such as curcumin, genistein, and quercetin, are reviewed. In studies in vitro, many of these compounds have been shown to affect signal transduction pathways, leading to inhibition of cell growth and transformation, enhanced apoptosis, reduced invasive behavior, and slowed angiogenesis. However, the concentrations used in cell culture studies were much higher than those found in vivo. If we propose mechanisms for cancer prevention on the basis of cell line experiments, then these activities must be demonstrated in vivo. The bioavailability, ie, tissue and cellular concentrations, of dietary polyphenols is a determining factor in their cancer-preventing activity in vivo. For example, compounds such as curcumin are effective when applied topically to the skin or administered orally to affect the colon but are not effective in internal organs such as the lungs. More in-depth studies on bioavailability should facilitate correlation of mechanisms determined in vitro with in vivo situations, increase our understanding of dose-response relationships, and facilitate extrapolation of results from animal studies to human situations.
The present study was designed to investigate the effects of two main constituents of green tea, (À)-epigallocatechin-3-gallate (EGCG) and caffeine, on intestinal tumorigenesis in Apc min/+ mice, a recognized mouse model for human intestinal cancer, and to elucidate possible mechanisms involved in the inhibitory action of the active constituent. We found that p.o. administration of EGCG at doses of 0.08% or 0.16% in drinking fluid significantly decreased small intestinal tumor formation by 37% or 47%, respectively, whereas caffeine at a dose of 0.044% in drinking fluid had no inhibitory activity against intestinal tumorigenesis. In another experiment, small intestinal tumorigenesis was inhibited in a dose-dependent manner by p.o. administration of EGCG in a dose range of 0.02% to 0.32%. P.o. administration of EGCG resulted in increased levels of E-cadherin and decreased levels of nuclear B-catenin, c-Myc, phospho-Akt, and phospho-extracellular signal-regulated kinase 1/2 (ERK1/ 2) in small intestinal tumors. Treatment of HT29 human colon cancer cells with EGCG (12.5 or 20 Mmol/L at different times) also increased protein levels of E-cadherin by 27% to 58%, induced the translocation of B-catenin from nucleus to cytoplasm and plasma membrane, and decreased c-Myc and cyclin D1 (20 Mmol/L EGCG for 24 hours). These results indicate that EGCG effectively inhibited intestinal tumorigenesis in Apc min/+ mice, possibly through the attenuation of the carcinogenic events, which include aberrant nuclear B-catenin and activated Akt and ERK signaling. (Cancer Res 2005; 65(22): 10623-31)
Characterization of renal tumors is critical to determine the best therapeutic approach and improve overall patient survival. Because of increased use of high-resolution cross-sectional imaging in clinical practice, renal masses are being discovered with increased frequency. As a result, accurate imaging characterization of these lesions is more important than ever. However, because of the wide array of imaging features encountered as well as overlapping characteristics, identifying reliable imaging criteria for differentiating malignant from benign renal masses remains a challenge. Multiparametric magnetic resonance (MR) imaging based on various anatomic and functional parameters has an important role and adds diagnostic value in detection and characterization of renal masses. MR imaging may allow distinction of benign solid renal masses from several renal cell carcinoma (RCC) subtypes, potentially suggest the histologic grade of a neoplasm, and play an important role in ensuring appropriate patient management to avoid unnecessary surgery or other interventions. It is also a useful noninvasive imaging tool for patients who undergo active surveillance of renal masses and for follow-up after treatment of a renal mass. The purpose of this article is to review the characteristic MR imaging features of RCC and common benign renal masses and propose a diagnostic imaging approach to evaluation of solid renal masses using multiparametric MR imaging. RSNA, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.