With the development of artificial intelligence technology and the popularity of intelligent production projects, intelligent inspection systems have gradually become a hot topic in the industrial field. As a fundamental problem in the field of computer vision, how to achieve object detection in the industry while taking into account the accuracy and real-time detection is an important challenge in the development of intelligent detection systems. The detection of defects on steel surfaces is an important application of object detection in the industry. Correct and fast detection of surface defects can greatly improve productivity and product quality. To this end, this paper introduces the MSFT-YOLO model, which is improved based on the one-stage detector. The MSFT-YOLO model is proposed for the industrial scenario in which the image background interference is great, the defect category is easily confused, the defect scale changes a great deal, and the detection results of small defects are poor. By adding the TRANS module, which is designed based on Transformer, to the backbone and detection headers, the features can be combined with global information. The fusion of features at different scales by combining multi-scale feature fusion structures enhances the dynamic adjustment of the detector to objects at different scales. To further improve the performance of MSFT-YOLO, we also introduce plenty of effective strategies, such as data augmentation and multi-step training methods. The test results on the NEU-DET dataset show that MSPF-YOLO can achieve real-time detection, and the average detection accuracy of MSFT-YOLO is 75.2, improving about 7% compared to the baseline model (YOLOv5) and 18% compared to Faster R-CNN, which is advantageous and inspiring.
A growing interest has been witnessed recently from both academia and industry in building nearest neighbor search (NNS) solutions on top of full-text search engines. Compared with other NNS systems, such solutions are capable of effectively reducing main memory consumption, coherently supporting multi-model search and being immediately ready for production deployment. In this paper, we continue the journey to explore specifically how to empower full-text search engines with fast and exact NNS in Hamming space (i.e., the set of binary codes). By revisiting three techniques (bit operation, subs-code filtering and data preprocessing with permutation) in information retrieval literature, we develop a novel engineering solution for full-text search engines to efficiently accomplish this special but important NNS task. In the experiment, we show that our proposed approach enables full-text search engines to achieve significant speed-ups over its state-of-the-art term match approach for NNS within binary codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.