BackgroundMetastatic colorectal cancer (mCRC) is a major cause of death of malignant tumor and the valuable prognostic biomarker for chemotherapy is crucial in decreasing mortality. Previous studies have proved the prognostic value of the mean platelet volume (MPV) in survival of primary operable CRC patients. However, the prognostic impact of MPV in mCRC is still unclear. In this study, we aimed to clarify the prognostic role of MPV in mCRC undergoing standard first-line chemotherapy.MethodsFrom January 2012 to December 2016, we conducted a retrospective clinical study included 264 mCRC patients (NCT03532711). All the enrolled patients received the standard oxaliplatin-based or irinotecan-based chemotherapy. The association between the baseline MPV and clinicopathological features were examined.ResultsUnivariate analysis revealed that decreased MPV, the platelet counts (PLT), platelet-to-lymphocyte ratio (PLR) and the platelet crit (PCT) were significantly associated with inferior overall survival (OS) (p < 0.05). On multivariate analysis, elevated PLR was significant prognostic factors for OS, with hazard ratios of (HR:1.006, 95% CI:1.001–1.011, p = 0.01) while MPV was not, respectively (p < 0.05).ConclusionsOur study demonstrated that the baseline MPV level may act as a predictive factor for survival in mCRC patients undergoing standard chemotherapy.Trial registrationThis study was retrospectively registered in date May the 20th 2018. The registration number (TRN) of this study was NCT03532711.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-5252-2) contains supplementary material, which is available to authorized users.
BackgroundWith increases in global travel and trade, the spread of arboviruses is undoubtedly alarming. Pathogen detection in field-caught mosquitoes can provide the earliest possible warning of transmission. Insect-specific flavivirus (ISFV) has been first detected in 1991 and documented worldwide in the latest ten years. Although infection with ISFVs is apparently limited to insects, an increase in the infection rate of mosquito-borne flaviviruses may be able to induce cytopathic effects in vertebrate cells during co-infection with other human pathogens. However, little is known whether ISFVs persist in most regions of China.MethodsDuring the mosquito activity season in 2016, a surveillance program was carried out to detect ISFVs in mosquitoes in metropolitan Shanghai, China. The presence of ISFVs was randomly tested in different species of mosquitoes using RT-PCR-based and hemi-nested PCR assays, following by the sequencing of PCR products. Sequences from positive pooled samples were compared with those deposited in GenBank. Thereafter, sequences of representative insect flaviviruses were used for further phylogenetic and molecular evolutionary analyses.ResultsOur investigations showed: (1) the presence of Aedes flavivirus (AEFV) in 11/161 pooled samples (nine pools in Songjiang District, one pool in Huangpu District, and one pool in Qingpu District) of Aedes albopictus, (2) the presence of Quang Binh virus (QBV) in 10/195 pooled samples (all in Chongming District) of Culex tritaeniorhynchus; and (3) the presence of Culex flavivirus (CxFV) in 9/228 pooled samples (six pools in Pudong New Area, two pools in Huangpu District, and one pool in Chongming District) of Cx. pipiens. Furthermore, phylogenetic analyses of the gene sequences of envelope proteins indicated that Shanghai CxFV strains belonged to the Asia/USA genotype. The overall maximum likelihood estimation values (and 95% confidence interval) for CxFV, QBV, and AEFV in mosquitoes collected in Shanghai in 2016 were 1.34 (0.66–2.45), 1.65 (0.87–2.85), and 1.51 (0.77–2.70) per 1000, respectively.ConclusionsThis study reveals the presence and the geographical distribution of ISFVs, and determines the genetic variation and the infection rate of ISFVs in Shanghai, China. At least, three insect flaviviruses including ISFVs, AEFV, CxFV, and QBV, co-circulate in this area. To our knowledge, this is the first report of AEFV in China.Electronic supplementary materialThe online version of this article (10.1186/s40249-018-0457-9) contains supplementary material, which is available to authorized users.
BackgroundAngiostrongyliasis is a food-borne parasitic zoonosis. Human infection is caused by infection with the third-stage larvae of Angiostrongylus cantonensis. The life cycle of A. cantonensis involves rodents as definitive hosts and molluscs as intermediate hosts. This study aims to investigate on the infection status and characteristics of spatial distribution of these hosts, which are key components in the strategy for the prevention and control of angiostrongyliasis.MethodsThree villages from Nanao Island, Guangdong Province, China, were chosen as study area by stratified random sampling. The density and natural infection of Pomacea canaliculata and various rat species were surveyed every three months from December 2015 to September 2016, with spatial correlations of the positive P. canaliculata and the infection rates analysed by ArcGIS, scan statistics, ordinary least squares (OLS) and geographically weighted regression (GWR) models.ResultsA total of 2192 P. canaliculata specimens were collected from the field, of which 1190 were randomly chosen to be examined for third-stage larvae of A. cantonensis. Seventy-two Angiostrongylus-infected snails were found, which represents a larval infection rate of 6.1% (72/1190). In total, 110 rats including 85 Rattus norvegicus, 10 R. flavipectus, one R. losea and 14 Suncus murinus were captured, and 32 individuals were positive (for adult worms), representing an infection rate of 29.1% of the definitive hosts (32/110). Worms were only found in R. norvegicus and R. flavipectus, representing a prevalence of 36.5% (31/85) and 10% (1/10), respectively in these species, but none in R. losea and S. murinus, despite testing as many as 32 of the latter species. Statistically, spatial correlation and spatial clusters in the spatial distribution of positive P. canaliculata and positive rats existed. Most of the spatial variability of the host infection rates came from spatial autocorrelation. Nine spatial clusters with respect to positive P. canaliculata were identified, but only two correlated to infection rates. The results show that corrected Akaike information criterion, R2, R2 adjusted and σ2 in the GWR model were superior to those in the OLS model.ConclusionsP. canaliculata and rats were widely distributed in Nanao Island and positive infection has also been found in the hosts, demonstrating that there was a risk of angiostrongyliasis in this region of China. The distribution of positive P. canaliculata and rats exhibited spatial correlation, and the GWR model had advantage over the OLS model in the spatial analysis of hosts of A. cantonensis.Electronic supplementary materialThe online version of this article (10.1186/s40249-018-0482-8) contains supplementary material, which is available to authorized users.
Background: Transcervical esophagectomy is a less invasive procedure performed within mediastinum.However, the mediastinum offers limited surgical space and the surgery via this route differs from conventional minimally invasive esophagectomy. Therefore, the physiological study of this surgical approach on an animal model would be necessary before the procedure gained more popularity. Methods: We conducted transcervical minimally invasive esophagectomy on animal model (swine)under CO 2 pneumomediastinum. The hemodynamic parameters were monitored using float catheter cannulated via right jugular vein. At different anatomical level (the upper, middle, and lower thoracic part of the animal esophagus), increased artificial pneumomediastinal pressures (0,4,8,12, and 16 mmHg) were consecutively allocated to record the intra-operative changes of blood pressure, cardiac output (CO), central venous pressure (CVP), pulmonary artery pressure (PAP) and extravascular lung water (EVLW).Meanwhile, the surgical field under different pneumomediastinum pressure was recorded and balanced with animals' hemodynamic changes to determine the optimal pressure for transcervical minimally invasive esophagectomy. Results: The animal procedures were accomplished without conversions. During the upper thoracic stage, increased CO 2 pressures did not lead to significant changes in hemodynamic parameters including the blood pressure, CO, CVP, PAP or the level of EVLW. During the middle thoracic stage, pneumomediastinum under 4-12 mmHg did not lead to significant changes in hemodynamic parameters. However, pneumomediastinum at 16 mmHg resulted in lower CO (P=0.038) when compared to 0-12 mmHg.During lower thoracic stage, as the pneumomediastinum pressures increased from 0 to 16 mmHg, significant decrease in CO (P=0.022), and increase in CVP (P=0.036) was recorded. In compared to 4 mmHg pneumomediastinum, the surgical field under 8-16 mmHg artificial CO 2 pneumomediastinum was suitable for mediastinal manipulation. Conclusions: During transcervical minimally invasive esophagectomy on animal model, the mobilization of swine thoracic esophagus with optimal pneumomediastinum pressure 8-12 mmHg is safe and effective based on hemodynamic analysis. 6506 Chen et al. Transcervical minimally invasive esophagectomy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.