Comparisons were made among four categories of protein flexibility: (1) low-B-factor ordered regions, (2) high-B-factor ordered regions, (3) short disordered regions, and (4) long disordered regions. Amino acid compositions of the four categories were found to be significantly different from each other, with high-Bfactor ordered and short disordered regions being the most similar pair. The high-B-factor (flexible) ordered regions are characterized by a higher average flexibility index, higher average hydrophilicity, higher average absolute net charge, and higher total charge than disordered regions. The low-B-factor regions are significantly enriched in hydrophobic residues and depleted in the total number of charged residues compared to the other three categories. We examined the predictability of the high-B-factor regions and developed a predictor that discriminates between regions of low and high B-factors. This predictor achieved an accuracy of 70% and a correlation of 0.43 with experimental data, outperforming the 64% accuracy and 0.32 correlation of predictors based solely on flexibility indices. To further clarify the differences between short disordered regions and ordered regions, a predictor of short disordered regions was developed. Its relatively high accuracy of 81% indicates considerable differences between ordered and disordered regions. The distinctive amino acid biases of high-B-factor ordered regions, short disordered regions, and long disordered regions indicate that the sequence determinants for these flexibility categories differ from one another, whereas the significantly-greater-than-chance predictability of these categories from sequence suggest that flexible ordered regions, short disorder, and long disorder are, to a significant degree, encoded at the primary structure level.Keywords: temperature factor; natively unfolded; intrinsically unstructured; flexibility prediction Supplemental material: See www.proteinscience.org.The B-factor of the ␣-carbon and the B-factor averaged over the four backbone atoms have both been used as measures of residue flexibility of folded proteins (Karplus and Schulz 1985;Vihinen et al. 1994;Kundu et al. 2002). In crystal structures of macromolecules, the B-factor reflects the uncertainty in atom positions in the model and often represents the combined effects of thermal vibrations and static disorder (Rhodes 1993).B-factors have been studied from a variety of viewpoints. Karplus and Schulz (1985) determined normalized ␣-carbon B-factors for each amino acid from which flexibility indices were calculated and subsequently used in a sliding-window prediction of the B-factor. Vihinen et al. (1994) and Smith et al. (2003) further developed the method of Karplus and Schulz (1985) and improved the correlation between predicted and experimentally determined B-factors. These flexibility indices do not indicate inherent amino acid plasticity,
Protein molecules exhibit varying degrees of flexibility throughout their three-dimensional structures, with some segments showing little mobility while others may be so disordered as to be unresolvable by techniques such as X-ray crystallography. Atomic displacement parameters, or B-factors, from X-ray crystallographic studies give an experimentally determined indication of the degree of mobility in a protein structure. To provide better estimators of amino acid flexibility, we have examined B-factors from a large set of high-resolution crystal structures. Because of the differences among structures, it is necessary to normalize the B-factors. However, many proteins have segments of unusually high mobility, which must be accounted for before normalization can be performed. Accordingly, a median-based method from quality control studies was used to identify outliers. After removal of outliers from, and normalization of, each protein chain, the B-factors were collected for each amino acid in the set. It was found that the distribution of normalized B-factors followed a Gumbel, or extreme value distribution, and the location parameter, or mode, of this distribution was used as an estimator of flexibility for the amino acid. These new parameters have a higher correlation with experimentally determined B-factors than parameters from earlier methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.