Objective. The aim of the study is to explore the molecular mechanism of activating blood circulation and dispersing stasis herbs in the treatment of pre-eclampsia with Chuanxiong Rhizoma-Radix Salvia miltiorrhiza. Methods. The chemical composition and targets of Chuanxiong Rhizoma-Radix Salvia miltiorrhiza were retrieved from the TCMSP database, and a PPI network was constructed for common genes. Subsequently, a graph of the “active component-target-action pathway” was plotted by Cytoscape 3.7.2 and a KEGG pathway enrichment was performed using the R language cluster profiler package. Molecular docking was conducted between the top five PPI targets of Chuanxiong Rhizoma-Radix Salvia miltiorrhiza. Results. According to network pharmacology, there were 32 target genes, 60 active components, and 59 pathways in Chuanxiong Rhizoma-Radix Salvia miltiorrhiza, and its most evident effects were exerted on G-protein-coupled amine receptors and the neuroactive ligand-receptor interaction signaling pathway. Molecular docking indicated that the target protein had a good binding ability with the drugs. Conclusion. Chuanxiong Rhizoma-Radix Salvia miltiorrhiza have therapeutic effects in pre-eclampsia, as confirmed by the results of molecular biology analysis. Thus, the Chuanxiong Rhizoma-Radix Salvia miltiorrhiza regimen provides a basis for the treatment of pre-eclampsia using traditional Chinese medicine.
Cervical cancer (CC) is the most common gynecological malignant tumor. Immunotherapy has become a new model for the treatment of CC, especially advanced and recurrent cancer. At present, many studies are exploring the safety and efficacy of immunotherapy for advanced or recurrent CC. In this study, CIBERSORT was used to analyze the immune cell infiltration in CC patients, to evaluate the proportion of immune cell types in CC samples, to quantify the cell composition of the immune response, and to analyze its prognostic value. The expression profile datasets of CC were downloaded from the GEO. The differentially expressed genes (DEGs) between CC and normal cervical tissues were identified via R software (version 4.1.1), and their functions and pathways were enriched and analyzed. A protein–protein interaction network was constructed to screen the hub gene. Immune cell infiltration in CC was analyzed via scientific reverse convolution algorithm (CIBERSORT), and the hub gene was analyzed via survival analysis to screen the diagnostic biomarkers of CC. A total of 144 DEGs and 12 hub genes were identified. DEGs are mainly involved in molecular functions such as serine-peptidase activity, serine-hydrolase activity, and chemokine activity. The enrichment pathway is closely related to the interaction between viral proteins and cytokines and cytokine receptors, the interleukin 17 signaling pathway, and chemokine signaling pathway. The immune cell infiltration analysis showed that T cells were the main infiltrating immune cells in CC, especially T cells CD8+ and CD4+ . The survival analysis of the hub gene showed that CEP55, MCM2, RFC4, and RRM2 had high diagnostic value. CEP55, MCM2, RFC4, and RRM2 can be used as diagnostic markers for CC. CD8+ and CD4+ T cells are closely related to the occurrence and development of CC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.