As a new type of building envelope, Gcrw is mainly used for excavation of foundation pit. It can stand by itself without the help of bracing, especially in soft soil area. Its stressed characteristic hasn’t been known yet. By using advanced big finite element software Abaqus/Cae, a simulation was made on model of Gcrw under soil pressure when a foundation pit is dug, while the whole excavation is divided into three continuous independent excavation stages. The result shows that Gcrw is a rather good building envelope, Gcrw and soil in the gridding form an integral earth-retaining structure and keep balance under soil pressure before or behind the structure, and have little displacement in horizontal direction. It is like a gravity-type retaining wall in its entirety, but takes on an elastic characteristic. The soil pressure presents a linear change, but its value is less than the theoretical value of calculation. The front wall of Gcrw, like a sheet, is the main flexural construction element, which is subjected to the pressure from side wall of foundation pit and produce curve deformation. The back wall of Gcrw has little displacement and almost is built in the clay. The partition wall endures the effect of the tensile force, its horizontal deformation increases with the build-in depth’s increasing. The back wall and the partition wall play a very important role in dragging back the front wall, the role of them is similar to a pair of anchor tie. The soil in the gridding not only provides soil pressure, but also can fix the back wall, so it is seen as a part of Gcrw and in favor of the Gcrw’s anti-overturn.
Manipulations of free‐space light are usually achieved through various metasurfaces and spatial light modulators. However, an external light source is required to excite these devices, making complete on‐chip integrations difficult. Integrated photonics enables the miniaturization and multi‐functionalization of optical systems by densely packing numerous optical components on a single chip. Particularly, plasmons have recently attracted extensive attention due to their unique abilities to enable the routing and manipulation of light at the nanoscale. Here optical wavefront shaping achieved by holographic metal‐insulator‐metal plasmonic gap waveguides is reported. An arbitrary free‐space wave's amplitude and phase information can be recorded in the waveguide by the amplitude variation of the guided wave. By elaborately designing the plasmonic gap waveguide, the guided waves can be molded into any desired free‐space light field, thus enabling complex free‐space functions including highly directional beams, dual beams with arbitrarily tailorable power ratio and radiation angles, focusing beams, and Airy beam generation. This study opens a new route for optical wavefront shaping via modulating guided waves. It paves the way for optical interconnects across multifunctional photonic integrated devices and free space, holding potential in optical communications, light detection and ranging, imaging, and displays.
This paper is mainly to study earth pressure on Gcrw used as a new kind of supporting structures in the excavation of deep foundation pits in soft soil region. On the basis of the simulation of step by step excavation by using big finite element software Abaqus/CAE and considering three-dimension elastoplastic stress state, the characteristics of different earth pressure are systematically discussed upon practical engineering. By comparing simulation results with calculated results based on calculation formula of Rankine Theory, it can be seen that the earth pressure in active zone is different from theoretic active earth pressure and earth pressure at rest while walls and soil in the gridding are regarded as a whole, which is greater than the former and somewhere similar to the latter, the earth pressure in passive zone is bigger than theoretic value of passive earth pressure, it is the tensive force from partition wall that prevent the front wall from overturning. These conclusions will be helpful for design and construction of new retaining wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.