Based on the density functional theory and following the first-principle method, this paper investigated the electronic structures, density of states, effective masses of the electrons and holes, and optical properties...
Low-toxicity, air-stable cesium bismuth iodide Cs3Bi2X9 (X = I, Br, and Cl) perovskites are gaining substantial attention owing to their excellent potential in photoelectric and photovoltaic applications. In this work, the lattice constants, band structures, density of states, and optical properties of the Cs3Bi2X9 under high pressure perovskites are theoretically studied using the density functional theory. The calculated results show that the changes in the bandgap of the zero-dimensional Cs3Bi2I9, one-dimensional Cs3Bi2Cl9, and two-dimensional Cs3Bi2Br9 perovskites are 3.05, 1.95, and 2.39 eV under a pressure change from 0 to 40 GPa, respectively. Furthermore, it was found that the optimal bandgaps of the Shockley–Queisser theory for the Cs3Bi2I9, Cs3Bi2Br9, and Cs3Bi2Cl9 perovskites can be reached at 2–3, 21–26, and 25–29 GPa, respectively. The Cs3Bi2I9 perovskite was found to transform from a semiconductor into a metal at a pressure of 17.3 GPa. The lattice constants, unit-cell volume, and bandgaps of the Cs3Bi2X9 perovskites exhibit a strong dependence on dimension. Additionally, the Cs3Bi2X9 perovskites have large absorption coefficients in the visible region, and their absorption coefficients undergo a redshift with increasing pressure. The theoretical calculation results obtained in this work strengthen the fundamental understanding of the structures and bandgaps of Cs3Bi2X9 perovskites at high pressures, providing a theoretical support for the design of materials under high pressure.
The radiation resistance of rare-earth doped optical fibers is critical to applications in space-based environments such as laser radars, optical communications, and laser altimeters. Usually, doping various elements, such as aluminum (Al), phosphorus (P), and boron (B), is necessary to fine-tune the structural, electronic, and optical properties, but often results in degraded radiation resistance. Thus, achieving both excellent optical and radiation properties remain a challenge. Here, we theoretically investigate and compare the electronic, structural, and optical properties of [BPO4]° and [AlPO4]° units in silica glass. We prove that both [BPO4]° and [AlPO4]° units are stable in the SiO2 matrix. As the radiation resistance of [SiO4/2]° is excellent, inferring from the material's structure, the SiO2-BPO4 and SiO2-AlPO4 should have good radiation resistance. From the calculation, the SiO2-BPO4 is structurally and electronically similar to the SiO2-AlPO4. Importantly, the refractive index of SiO2-BPO4 is lower than SiO2-AlPO4, achieving refractive index tuning while maintaining its radiation resistance. Our results provide some guidance for the design of BPO4-based radiation-resistant active fibers.
Ultrathin inorganic halogenated perovskites have attracted attention owing to their excellent photoelectric properties. In this work, we designed two types of Ruddlesden–Popper hybrid perovskites, Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2, and studied their band structures and band gaps as a function of the number of layers (n = 1–5). The calculation results show that Csn+1SnnBr3n+1 has a direct bandgap while the bandgap of CsnSnn+1Br3n+2 can be altered from indirect to direct, induced by the 5p-Sn state. As the layers increased from 1 to 5, the bandgap energies of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 decreased from 1.209 to 0.797 eV and 1.310 to 1.013 eV, respectively. In addition, the optical absorption of Csn+1SnnBr3n+1 and CsnSnn+1Br3n+2 was blue-shifted as the structure changed from bulk to nanolayer. Compared with that of Csn+1SnnBr3n+1, the optical absorption of CsnSnn+1Br3n+2 was sensitive to the layers along the z direction, which exhibited anisotropy induced by the SnBr2-terminated surface.
Lead-free perovskites of Cs3Sb2X9 (X = Cl, Br, or I) have attracted wide attention owing to their low toxicity. High pressure is an effective and reversible method to tune bandgap without changing the chemical composition. Here, the structural and photoelectric properties of Cs3Sb2X9 under high pressure were theoretically studied by using the density functional theory. The results showed that the ideal bandgap for Cs3Sb2X9 can be achieved by applying high pressure. Moreover, it was found that the change of the bandgap is caused by the shrinkage of the Sb-X long bond in the [Sb2X9]3− polyhedra. Partial density of states indicated that Sb-5s and X-p orbitals contribute to the top of the valence band, while Sb-5p and X-p orbitals dominate the bottom of the conduction band. Moreover, the band structure and density of states showed significant metallicity at 38.75, 24.05 GPa for Cs3Sb2Br9 and Cs3Sb2I9, respectively. Moreover, the absorption spectra showed the absorption edge redshifted, and the absorption coefficient of the Cs3Sb2X9 increased under high pressure. According to our calculated results, the narrow bandgap and enhanced absorption ability under high pressure provide a new idea for the design of the photovoltaic and photoelectric devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.