The fluidics system is an indispensable and primary component of phacoemulsification. Both the gravity-fluidics system and active-fluidics system are commonly used in practice. The irrigation pressure of the gravity-fluidics system is determined by the bottle height, which is relatively constant, while the active-fluidics system is paired with a cassette that contains pressure sensors to monitor intraocular pressure changes. The active-fluidics system allows surgeons to preset a target intraocular pressure value, and it replenishes the fluids proactively; thus, the intraocular pressure is consistently maintained near the target value. Under such circumstances, stable intraocular pressure and anterior chamber volume values could be acquired. Research on surgical safety, efficiency and results have reported several strengths of the active-fluidics system. It is also advantageous in some complicated cataract surgeries. However, the system is not widely used at present, mainly due to its low penetration rate and high equipment cost. Some of its updates such as the new Active Sentry handpiece showed potential superiority in laboratory studies recently, but there is still further research to be conducted. This article gives an overview of the mechanism and performance of the active-fluidics system, and it is expected to provide clues for future research.
Background: Corneal edema (CE) affects the outcome of phacoemulsification. Effective ways to predict the CE after phacoemulsification are needed. Methods: On the basis of data from patients conforming to the protocol of the AGSPC trial, 17 variables were selected to predict CE after phacoemulsification by constructing a CE nomogram through multivariate logistic regression, which was improved via variable selection with copula entropy. The prediction models were evaluated using predictive accuracy, the area under the receiver operating characteristic curve (AUC), and decision curve analysis (DCA). Results: Data from 178 patients were used to construct prediction models. After copula entropy variable selection, which shifted the variables used for prediction in the CE nomogram from diabetes, best corrected visual acuity (BCVA), lens thickness and cumulative dissipated energy (CDE) to CDE and BCVA in the Copula nomogram, there was no significant change in predictive accuracy (0.9039 vs. 0.9098). There was also no significant difference in AUCs between the CE nomogram and the Copula nomogram (0.9637, 95% CI 0.9329–0.9946 vs. 0.9512, 95% CI 0.9075–0.9949; p = 0.2221). DCA suggested that the Copula nomogram has clinical application. Conclusions: This study obtained a nomogram with good performance to predict CE after phacoemulsification, and showed the improvement of copula entropy for nomogram models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.